Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Base Pressure Control with Semi-Circular Ribs at Critical Mach Number

    Ambareen Khan1, Sher Afghan Khan2, Mohammed Nishat Akhtar1,*, Abdul Aabid3,*, Muneer Baig3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2007-2028, 2024, DOI:10.32604/fdmp.2024.049368 - 23 August 2024

    Abstract When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles, rockets, and aeroplanes, the base pressure control is activated. Controlling the base pressure and drag is necessary in both scenarios. In this work, semi-circular ribs with varying diameters (2, 4, and 6 mm) positioned at six distinct positions (0.5D, 1D, 1.5D, 2D, 3D, and 4D) inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique. In-depth research is done on optimising rib size for various More > Graphic Abstract

    Base Pressure Control with Semi-Circular Ribs at Critical Mach Number

  • Open Access

    ARTICLE

    Control of Nozzle Flow Using Rectangular Ribs at Sonic and Supersonic Mach Numbers

    Vigneshvaran Sethuraman1, Parvathy Rajendran1,*, Sher Afghan Khan2, Abdul Aabid3, Muneer Baig3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1847-1866, 2024, DOI:10.32604/fdmp.2024.049441 - 06 August 2024

    Abstract This study deals with base pressure management in a duct for various values of the Mach number (M), namely, Mach number corresponding to sonic and four supersonic conditions. In addition to the Mach number, the nozzle pressure ratio (NPR), the area ratio, the rib dimension, and the duct length are influential parameters. The following specific values are examined at M = 1, 1.36, 1.64, and 2, and NPRs between 1.5 and 10. The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct. When the… More >

  • Open Access

    ARTICLE

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

    Jaimon Dennis Quadros1, Sher Afghan Khan2, Abdul Aabid3,*, Muneer Baig3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2331-2352, 2023, DOI:10.32604/cmes.2023.028925 - 03 August 2023

    Abstract The application of abruptly enlarged flows to adjust the drag of aerodynamic vehicles using machine learning models has not been investigated previously. The process variables (Mach number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (γ )) were numerically explored to address several aspects of this process, namely base pressure (β) and base pressure with cavity (βcav). In this work, the optimal base pressure is determined using the PCA-BAS-ENN based algorithm to modify the base pressure presetting accuracy, thereby regulating the base drag required for smooth flow of aerodynamic vehicles. Based… More > Graphic Abstract

    Modeling and Validation of Base Pressure for Aerodynamic Vehicles Based on Machine Learning Models

  • Open Access

    ARTICLE

    Numerical Analysis of Cavity-Based Control of Base Pressure Variations at Supersonic Mach Numbers

    Ridwan1, Sher Afghan Khan1,*, Jaffar Syed Mohamed Ali1, Mohd. Azan Mohammed Sapardi1, Abdul Aabid2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1655-1678, 2023, DOI:10.32604/fdmp.2023.025230 - 30 January 2023

    Abstract In the present study, the base pressure variations induced by the presence of a cavity, known to have a strong influence of the behaviour of supersonic projectiles, are investigated through numerical solution of the balance equations for mass, momentum, and energy. An area ratio of four is considered and numerical simulations are carried out at Mach M = 1.2, 1.4, 1.6, and 1.8 assuming no cavity or cavity locations 0.5D, 1D, 1.5D, and 2D. The inlet pressure of the nozzle is considered as a flow variable. The Taguchi method is also used, and the considered More >

  • Open Access

    ARTICLE

    Passive Control of Base Pressure in a Converging-Diverging Nozzle with Area Ratio 2.56 at Mach 1.8

    Nur Husnina Muhamad Zuraidi1, Sher Afghan Khan1,*, Abdul Aabid2,*, Muneer Baig2, Istiyaq Mudassir Shaiq3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 807-829, 2023, DOI:10.32604/fdmp.2023.023246 - 29 September 2022

    Abstract In this study, a duct is considered and special attention is paid to a passive method for the control of the base pressure relying on the use of a cavity with a variable aspect ratio. The Mach number considered is 1.8, and the area ratio of the duct is 2.56. In particular, two cavities are examined, their sizes being 3:3 and 6:3. The used L/D spans the interval 1–10 while the NPRs (nozzle pressure ratio) range from 2 to 9. The results show that the control becomes effective once the nozzles are correctly expanded or More >

  • Open Access

    ARTICLE

    Numerical Analysis of a Microjet-Based Method for Active Flow Control in Convergent-Divergent Nozzles with a Sudden Expansion

    Abdul Aabid1,*, Sher Afghan Khan2, Muneer Baig1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1877-1900, 2022, DOI:10.32604/fdmp.2022.021860 - 27 June 2022

    Abstract A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion. Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow: with the first one, the control is implemented at the base, with the second at the wall, while the third one may be regarded as a combination of these. When jets are over-expanded, the control is not very effective. However, when a favourable pressure gradient is established in the nozzle, the control becomes effective, More >

Displaying 1-10 on page 1 of 6. Per Page