Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    The Effect of Alkalization Fiber on Mechanical, Microstructure, and Thermal Properties of Sugarcane Bagasse Fiber Reinforced PLA Biocomposite

    Mochamad Asrofi1,*, Muhammad Oktaviano Putra Hastu1, Muhammad Luthfi Al Anshori1, Feyza Igra Harda Putra1, Revvan Rifada Pradiza1, Haris Setyawan1, Muhammad Yusuf1, Mhd Siswanto1, R.A. Ilyas2,3, Muhammad Asyraf Muhammad Rizal3, Salit Mohd Sapuan4, Victor Feizal Knight5, Mohd Nor Faiz Norrrahim5

    Journal of Renewable Materials, Vol.13, No.10, pp. 1979-1992, 2025, DOI:10.32604/jrm.2025.02025-0033 - 22 October 2025

    Abstract Biocomposites are one of the environmentally friendly materials as a substitute for synthetic plastics used for various applications in the automotive, household appliances industry, and interiors. In this study, biocomposites from Polylactic Acid (PLA) and sugarcane bagasse fibers (SBF) were made using the 3D Printing method. The effect of alkalization with NaOH of 0 (untreated), 4%, 6%, and 8% of the fibers were studied. The SBF in PLA was kept at 2% v/v from the total biocomposite. The characterization of all biocomposite tested using tensile, flexural, impact, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and Fourier… More > Graphic Abstract

    The Effect of Alkalization Fiber on Mechanical, Microstructure, and Thermal Properties of Sugarcane Bagasse Fiber Reinforced PLA Biocomposite

  • Open Access

    ARTICLE

    Bagasse Fibers Surface Heat Treatment and Its Effect on Mechanical Properties of Starch/Poly (Vinyl Alcohol) Composites

    Xiangyang Zhou1, Yashi Wang1, Min Xiao1,*, Jiajun Liu1,2, Jiahao Wen1, Haodong Shen3, Hucan Hong1

    Journal of Polymer Materials, Vol.42, No.3, pp. 795-810, 2025, DOI:10.32604/jpm.2025.068200 - 30 September 2025

    Abstract Sugarcane bagasse (SCB) is a promising natural fiber for bio-based composites, but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance. While chemical treatments have been extensively explored, limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers. This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly (vinyl alcohol) (PVA) composites. Characterization techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning… More >

  • Open Access

    ARTICLE

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

    Belkis Sulbarán-Rangel1,*, Jorge Armando Caldera Siller1, Salvador García Enríquez2, José Anzaldo-Hernandez2, Jenny Arratia-Quijada3, Marianelly Esquivel Alfaro4

    Journal of Renewable Materials, Vol.13, No.5, pp. 849-863, 2025, DOI:10.32604/jrm.2025.02024-0061 - 20 May 2025

    Abstract In this research, the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied. The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application. The antibacterial properties of chitosan and silver nanoparticles are already known. However, the… More > Graphic Abstract

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

  • Open Access

    ARTICLE

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

    Flávia Naves Ferreira do Prado1, Michelle Garcia Gomes1, Marcela Piassi Bernardo1, Daniel Pasquini1,*, Anízio Márcio de Faria2, Luís Carlos de Morais3,*

    Journal of Renewable Materials, Vol.13, No.5, pp. 957-980, 2025, DOI:10.32604/jrm.2025.02024-0014 - 20 May 2025

    Abstract Alternative methods for biodiesel purification that focus on ease of operation, cost reduction, and elimination of contaminated residues or that are easier to treat have received more attention. The dry wash route was used as an alternative to the wet route in biodiesel production. Filter membranes were developed based on cellulose nanofibers as the matrix and sugarcane bagasse fibers or soy hulls, as reinforcement to the matrix, before and after two chemical treatments (carboxymethylation and regeneration with sulfuric acid). The filters were characterized by permeability capacity, morphology, wettability, porosity, SEM and mechanical properties. The filtered… More > Graphic Abstract

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

  • Open Access

    ARTICLE

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

    Pattaranun Thuadaij, Bualoy Chanpaka*

    Journal of Renewable Materials, Vol.13, No.4, pp. 753-772, 2025, DOI:10.32604/jrm.2025.057590 - 21 April 2025

    Abstract Natural rubber (NR) foams are widely used. However, further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application. This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash (SCBA) and sodium alginate. The results showed that the SCBA was primarily composed of silica or silicon dioxide (87.52% by weight) and carbon (11.41% by weight). This study investigated the influence of the amount of sodium alginate (0–5 phr) used in the NR foam formation. The addition of SCBA on the NR foam affected More > Graphic Abstract

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

  • Open Access

    ARTICLE

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

    Peyman Ahmadi1,*, Davood Efhamisisi1,*, Marie-France Thévenon2,3, Hamid Zarea Hosseinabadi1, Reza Oladi1, Jean Gerard2,3

    Journal of Renewable Materials, Vol.12, No.10, pp. 1715-1728, 2024, DOI:10.32604/jrm.2024.054076 - 23 October 2024

    Abstract Sugarcane bagasse is an agro-waste that could replace timber resources for the production of bio-composites. Composite boards such as particleboard offer an issue for the use and recycling of poor quality timber, and these engineered products can overcome some solid wood limitations such as heterogeneity and dimension. Bagasse offers an alternative to wood chips for particleboard production but present some disadvantages as well, such as poor physico-mechanical properties. To address these issues, bagasse fibers were treated with an innovative natural resin formulated with tannin and furfural. Impregnated particles with different concentrations of resin (5%, 10%,… More > Graphic Abstract

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

  • Open Access

    ARTICLE

    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*

    Journal of Renewable Materials, Vol.12, No.4, pp. 721-736, 2024, DOI:10.32604/jrm.2024.031050 - 12 June 2024

    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials.… More >

  • Open Access

    ARTICLE

    Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement

    Waleed Awadalseed1, Honghua Zhao1, Hemei Sun2, Ming Huang3, Cong Liu4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1911-1935, 2023, DOI:10.32604/jrm.2023.025100 - 01 December 2022

    Abstract This study examined the effects of using bagasse ash in replacement of ordinary Portland cement (OPC) in the treatment of expansive soils. The study concentrated on the compaction characteristics, volume change, compressive strength, splitting tensile strength, microstructure, California bearing ratio (CBR) value, and shear wave velocity of expansive soils treated with cement. Different bagasse ash replacement ratios were used to create soil samples. At varying curing times of 7, 14, and 28 days, standard compaction tests, unconfined compressive strength tests, CBR tests, Brazilian split tensile testing, and bender element (BE) tests were carried out. According… More >

  • Open Access

    ARTICLE

    Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles

    A. MADHAN KUMAR1, K. JAYAKUMAR2,*, M. SHALINI3

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 269-281, 2022, DOI:10.32381/JPM.2022.39.3-4.7

    Abstract Polylactic acid (PLA) is the most popular thermoplastic biopolymer providing a stiffness and strength alternative to fossil-based plastics. It is also the most promising biodegradable polymer on the market right now, thus gaining a substitute for conservative artificial polymers. Therefore, the current research focuses on synthesizing and mechanical characterization of particlereinforced PLA composites. The hot compression molding technique was used to fabricate PLA-based composites with 0, 2.5, 5, and 7.5 weight % of sawdust, rice husk, and bagasse particle reinforcements to enhance the performance of the PLA. The pellets of PLA matrix were taken with… More >

Displaying 1-10 on page 1 of 20. Per Page