Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Employing a Backpropagation Neural Network for Predicting Fear of Cancer Recurrence among Non-Small Cell Lung Cancer Patients

    Man Liu1, Zhuoheng Lv1,#, Hongjing Wang2,*, Lu Liu1,*

    Psycho-Oncologie, Vol.18, No.4, pp. 305-316, 2024, DOI:10.32604/po.2024.054098 - 04 December 2024

    Abstract Objective: Non-small cell lung cancer (NSCLC) patients often experience significant fear of recurrence. To facilitate precise identification and appropriate management of this fear, this study aimed to compare the efficacy and accuracy of a Backpropagation Neural Network (BPNN) against logistic regression in modeling fear of cancer recurrence prediction. Methods: Data from 596 NSCLC patients, collected between September 2023 and December 2023 at the Cancer Hospital of the Chinese Academy of Medical Sciences, were analyzed. Nine clinically and statistically significant variables, identified via univariate logistic regression, were inputted into both BPNN and logistic regression models developed… More >

  • Open Access

    ARTICLE

    Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network

    Baowei Wang1,2,*, Wen You2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1085-1100, 2024, DOI:10.32604/cmc.2024.055538 - 15 October 2024

    Abstract As computer graphics technology continues to advance, Collision Detection (CD) has emerged as a critical element in fields such as virtual reality, computer graphics, and interactive simulations. CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments, particularly within complex scenarios like virtual assembly, where both high precision and real-time responsiveness are imperative. Despite ongoing developments, current CD techniques often fall short in meeting these stringent requirements, resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems. To address these limitations, this study introduces a… More >

  • Open Access

    ARTICLE

    Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy: Combined machine learning and experimental validation in mice

    WEI LIANG1,2,*, ZONGWEI ZHANG1,2, KEJU YANG1,2,3, HONGTU HU1,2, QIANG LUO1,2, ANKANG YANG1,2, LI CHANG4, YUANYUAN ZENG4

    BIOCELL, Vol.47, No.6, pp. 1253-1263, 2023, DOI:10.32604/biocell.2023.027373 - 19 May 2023

    Abstract Background: Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN; however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes… More >

Displaying 1-10 on page 1 of 3. Per Page