Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Deep Learning-Based Digital Image Forgery Detection Using Transfer Learning

    Emad Ul Haq Qazi1,*, Tanveer Zia1, Muhammad Imran2, Muhammad Hamza Faheem1

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 225-240, 2023, DOI:10.32604/iasc.2023.041181 - 27 February 2024

    Abstract Deep learning is considered one of the most efficient and reliable methods through which the legitimacy of a digital image can be verified. In the current cyber world where deepfakes have shaken the global community, confirming the legitimacy of a digital image is of great importance. With the advancements made in deep learning techniques, now we can efficiently train and develop state-of-the-art digital image forensic models. The most traditional and widely used method by researchers is convolution neural networks (CNN) for verification of image authenticity but it consumes a considerable number of resources and requires… More >

Displaying 1-10 on page 1 of 1. Per Page