Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (116)
  • Open Access

    ARTICLE

    A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics Modeling with Reduced Graphics Memory

    Zuokun Yang1, Jun Li1,2,*, Xin Lai1,2, Lisheng Liu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075980 - 29 January 2026

    Abstract Peridynamics (PD) demonstrates unique advantages in addressing fracture problems, however, its nonlocality and meshfree discretization result in high computational and storage costs. Moreover, in its engineering applications, the computational scale of classical GPU parallel schemes is often limited by the finite graphics memory of GPU devices. In the present study, we develop an efficient particle information management strategy based on the cell-linked list method and on this basis propose a subdomain-based GPU parallel scheme, which exhibits outstanding acceleration performance in specific compute kernels while significantly reducing graphics memory usage. Compared to the classical parallel scheme,… More >

  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    Structural, Morphological and Optical Comparison of In-S Films Deposited by CBD and Ultrasonic Pyrolytic Spraying, as a Buffer Layer in CIGS Solar Cells

    A. Ledesma-Juárez1, J. F. Quintero-Guerrero2, A. M. Fernández1,*

    Chalcogenide Letters, Vol.22, No.12, pp. 1009-1018, 2025, DOI:10.15251/CL.2025.2212.1009 - 06 December 2025

    Abstract Indium sulphide (In2S3) has positioned itself as an environmentally friendly and efficient option compared to traditional CdS, used as a buffer layer in thin-film solar cells that use Cu(In,Ga)Se2 (CIGS) as an absorbent material. This study provides a comparative analysis of two techniques for depositing thin films of In2S3: chemical bath deposition (CBD) and ultrasonic pyrolytic spraying. Their structural, morphological, compositional, and optical properties were evaluated. The films obtained by pyrolytic spraying, showed adequate crystallinity and uniformity. On the other hand, the films deposited by CBD had better stoichiometry (In2:S3 ≈ 40:60% at.) and higher bandgap values More >

  • Open Access

    ARTICLE

    Polystyrene-Grafted Molybdenum Disulfide Filled Polypropylene Composites for Enhanced Laser Marking Performance

    Minglei Hu1, Wei Zhang1, Bin Hu1, Haicun Yang2, Fuqiang Chu2, Zheng Cao2,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1125-1141, 2025, DOI:10.32604/jpm.2025.073300 - 26 December 2025

    Abstract Polypropylene (PP) has low inherent susceptibility to common industrial lasers, which poses a significant challenge for laser-based marking. To improve the laser sensitivity of PP, molybdenum disulfide grafted with polystyrene (MoS2-g-PS) was synthesized via in-situ free radical polymerization and used as a laser-sensitive filler for PP composites prepared by melt blending. The composites were then marked with a 1064 nm semiconductor laser, producing clear and legible patterns. The marked surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), colorimetry, Raman spectroscopy, and thermogravimetric analysis (TGA). The results demonstrate that the PP/MoS2-g-PS composites exhibit significantly More >

  • Open Access

    ARTICLE

    Mordukhovich Subdifferential Optimization Framework for Multi-Criteria Voice Cloning of Pathological Speech

    Rytis Maskeliūnas1, Robertas Damaševičius1,*, Audrius Kulikajevas1, Kipras Pribuišis2, Nora Ulozaitė-Stanienė2, Virgilijus Uloza2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4203-4223, 2025, DOI:10.32604/cmes.2025.072790 - 23 December 2025

    Abstract This study introduces a novel voice cloning framework driven by Mordukhovich Subdifferential Optimization (MSO) to address the complex multi-objective challenges of pathological speech synthesis in under-resourced Lithuanian language with unique phonemes not present in most pre-trained models. Unlike existing voice synthesis models that often optimize for a single objective or are restricted to major languages, our approach explicitly balances four competing criteria: speech naturalness, speaker similarity, computational efficiency, and adaptability to pathological voice patterns. We evaluate four model configurations combining Lithuanian and English encoders, synthesizers, and vocoders. The hybrid model (English encoder, Lithuanian synthesizer, English More >

  • Open Access

    ARTICLE

    Effect of porosity of mesoporous silicon substrates on CdS thin films deposited by chemical bath deposition

    F. Sakera,*, L. Remachea, D. Belfennacheb, K. R. Cheboukia, R. Yekhlefb

    Chalcogenide Letters, Vol.22, No.2, pp. 151-166, 2025, DOI:10.15251/CL.2025.222.151

    Abstract In this work the chemical bath deposition (CBD) method was used to synthesize Cadmium sulphide (CdS) thin films on glass, silicon (Si), and porous silicon (PSi) substrates. The PSi substrates were prepared by an electrochemical etching method using different current densities at constant etching time of 5 minutes. The CdS thin films were characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical transmittance spectroscopy in the Uv visible range, and electrical characterization (I–V characteristics). The obtained results demonstrated that the morphology of the deposited materials was influenced by the… More >

  • Open Access

    ARTICLE

    Molybdenum disulfide carbon composite material using hydrothermal method as electrode material for supercapacitors

    X. L. Guoa, Y. F. Zhanga,*, S. Y. Lib, Q. Lib, Q. Haoc, X. Y. Ranc, Y. M. Zhaod

    Chalcogenide Letters, Vol.22, No.4, pp. 313-330, 2025, DOI:10.15251/CL.2025.224.313

    Abstract MoS2 has excellent properties but low conductivity, limiting its use in supercapacitors. Carbon’s high conductivity and stability enhance MoS2’s electrochemical performance and cycling stability. This study prepared MoS2/C composites via a one-step hydrothermal method, exploring the effects of solvents and carbon content. Deionized water as a solvent resulted in composites with large specific surface areas and good electrochemical properties. Increasing carbon content improved electrochemical performance, peaking at a glucose content of 0.28 mmol, achieving a specific capacitance of 202.6 F/g. However, excessive carbon content led to decreased performance. More >

  • Open Access

    ARTICLE

    Preparation and characterization of CuAlXSn1-XS2 thin films prepared by electron beam deposition system

    A. S. Alqarnia,, S. N. Alamrib,

    Chalcogenide Letters, Vol.22, No.5, pp. 493-506, 2025, DOI:10.15251/CL.2025.225.493

    Abstract Abundant and environmentally friendly solar cells materials Cu2AlSnS4 (CATS) thin film successively prepared by electron beam deposition system. The impact of various deposition times and post-annealing at 450 °C under nitrogen gas atmosphere on the structures, morphologies, and spectroscopic characteristics of the obtained CATS films were investigated. Both deposition time variation and annealing process were found to significantly affect the crystallinity, bonding vibration, surface morphology, energy band gaps, and Urbach energy of the CATS films. EDX spectra of the films disclosed the existence of all constituents’ elements. XRD analysis of the post-annealed films verified their multiple More >

  • Open Access

    ARTICLE

    Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification

    Adeel Akram1, Tallha Akram2, Ghada Atteia3,*, Ayman Qahmash4, Sultan Alanazi5, Faisal Mohammad Alotaibi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025

    Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >

  • Open Access

    ARTICLE

    Subdivision-Based Isogeometric BEM with Deep Neural Network Acceleration for Acoustic Uncertainty Quantification under Ground Reflection Effects

    Yingying Guo1, Ziyu Cui2, Jibing Shen1, Pei Li3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4519-4550, 2025, DOI:10.32604/cmc.2025.071504 - 23 October 2025

    Abstract Accurate simulation of acoustic wave propagation in complex structures is of great importance in engineering design, noise control, and related research areas. Although traditional numerical simulation methods can provide precise results, they often face high computational costs when applied to complex models or problems involving parameter uncertainties, particularly in the presence of multiple coupled parameters or intricate geometries. To address these challenges, this study proposes an efficient algorithm for simulating the acoustic field of structures with adhered sound-absorbing materials while accounting for ground reflection effects. The proposed method integrates Catmull-Clark subdivision surfaces with the boundary… More >

Displaying 1-10 on page 1 of 116. Per Page