Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (347)
  • Open Access

    ARTICLE

    Gaussian Process Regression-Based Optimization of Fan-Shaped Film Cooling Holes on Concave Walls

    Yanzhao Yang1, Xiaowen Song2, Zhiying Deng2,*, Jianyang Yu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074345 - 06 February 2026

    Abstract In this study, a Gaussian Process Regression (GPR) surrogate model coupled with a Bayesian optimization algorithm was employed for the single-objective design optimization of fan-shaped film cooling holes on a concave wall. Fan-shaped holes, commonly used in gas turbines and aerospace applications, flare toward the exit to form a protective cooling film over hot surfaces, enhancing thermal protection compared to cylindrical holes. An initial hole configuration was used to improve adiabatic cooling efficiency. Design variables included the hole injection angle, forward expansion angle, lateral expansion angle, and aperture ratio, while the objective function was the More >

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

  • Open Access

    ARTICLE

    Analysis of Geometrical Arrangement and Packing Material on Heat Generation in Lithium-Ion Battery Banks

    Seenaa Khudhayer Salman1, Shaymaa Husham Abdulmalek2,*, Ali Ahmed Gitan1, Thamer Khalif Salem3, Raaid Rashad Jassem Al-Doury3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073940 - 27 January 2026

    Abstract Operating Lithium-ion batteries at their temperature limits is a challenging design task due to explosion risk at high temperatures and rapid degradation at low temperatures. Depending on the battery package design, those risks can be solved with passive solutions, which require no active cooling or heating. The current work aims to optimize the pack design and materials of the type-NCR18650B battery based on a wide range of operation temperature. The lower limit was denoted by cold case while the maximum limit was expressed by hot case. A combined analytical-numerical approach was developed to model the… More >

  • Open Access

    ARTICLE

    Collaboration of GTCC-Powered CAES with Residual Compression Heat for Gas Turbine Inlet Air Heating

    Cheng Yang*, Hanjie Qi, Qing Yin

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070957 - 27 January 2026

    Abstract In order to enhance the off-peak performance of gas turbine combined cycle (GTCC) units, a novel collaborative power generation system (CPG) was proposed. During off-peak operation periods, the remaining power of the GTCC was used to drive the adiabatic compressed air energy storage (ACAES), while the intake air of the GTCC was heated by the compression heat of the ACAES. Based on a 67.3 MW GTCC, under specific demand load distribution, a CPG system and a benchmark system (BS) were designed, both of which used 9.388% of the GTCC output power to drive the ACAES.… More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    Structural and Electrochemical Properties of Flower-Like SnS2 Architectures as Cathodic Material for Lithium-Sulfur Batteries

    N. Masood1, A. M. Toufiq2,*, S. Magam3,4, S. M. W. Ali2, M. T. Qureshi3,*

    Chalcogenide Letters, Vol.22, No.12, pp. 1047-1053, 2025, DOI:10.15251/CL.2025.2212.1047 - 08 December 2025

    Abstract Self-assembled highly hierarchical novel SnS2 microflowers having acute edge nanopetals have been fabricated using a facile template-free hydrothermal growth technique utilizing Tin (II) chloride dihydrate (SnCl2·2H2O) and Sodium sulfide nonahydrate (Na2S·9H2O) as reaction reagents. Morphological analysis exhibits the flower-type SnS2 microarchitectures ranging from 4 to 7 μm. The vibrational mode measured at A1g = 314 cm−1 confirms the existence of hexagonal phase SnS2 using Raman spectroscopy. The electrochemical results suggest the promise of as-synthesized SnS2 structures as a cathodic material in lithium-sulfur batteries. More >

  • Open Access

    ARTICLE

    Structural, Morphological and Optical Comparison of In-S Films Deposited by CBD and Ultrasonic Pyrolytic Spraying, as a Buffer Layer in CIGS Solar Cells

    A. Ledesma-Juárez1, J. F. Quintero-Guerrero2, A. M. Fernández1,*

    Chalcogenide Letters, Vol.22, No.12, pp. 1009-1018, 2025, DOI:10.15251/CL.2025.2212.1009 - 06 December 2025

    Abstract Indium sulphide (In2S3) has positioned itself as an environmentally friendly and efficient option compared to traditional CdS, used as a buffer layer in thin-film solar cells that use Cu(In,Ga)Se2 (CIGS) as an absorbent material. This study provides a comparative analysis of two techniques for depositing thin films of In2S3: chemical bath deposition (CBD) and ultrasonic pyrolytic spraying. Their structural, morphological, compositional, and optical properties were evaluated. The films obtained by pyrolytic spraying, showed adequate crystallinity and uniformity. On the other hand, the films deposited by CBD had better stoichiometry (In2:S3 ≈ 40:60% at.) and higher bandgap values More >

  • Open Access

    ARTICLE

    Effect of Drying Methods on the Morphology and Electrochemical Properties of Cellulose Gel Polymer Electrolytes for Lithium-Ion Batteries

    Jiling Song1, Hua Wang2,*, Jianbing Guo1, Minghua Lin2, Bin Zheng2,*, Jiqiang Wu3,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1143-1157, 2025, DOI:10.32604/jpm.2025.073414 - 26 December 2025

    Abstract The pursuit of safer energy storage systems is driving the development of advanced electrolytes for lithium-ion batteries. Traditional liquid electrolytes pose flammability risks, while solid-state alternatives often suffer from low ionic conductivity. Gel polymer electrolytes (GPEs) emerge as a promising compromise, combining the safety of solids with the ionic conductivity of liquids. Cellulose, an abundant and eco-friendly polymer, presents an ideal base material for sustainable GPEs due to its biocompatibility and mechanical strength. This study systematically investigates how drying methods affect cellulose-based GPEs. Cellulose hydrogels were synthesized through dissolution-crosslinking and processed using vacuum drying (VD),… More >

  • Open Access

    ARTICLE

    Biomass-Derived Hard Carbon Anodes from Setaria Viridis for Na-Ion Batteries

    Jingxiang Meng1, Xin Liu1, Wenping Zeng1, Jianjun Song2, Songyi Liao1, Yonggang Min1,2,*, Jintao Huang1,*

    Journal of Renewable Materials, Vol.13, No.12, pp. 2297-2308, 2025, DOI:10.32604/jrm.2025.02025-0098 - 23 December 2025

    Abstract Biomass-derived hard carbon has gradually become an important component of sodium-ion batteries’ anodes. In this work, Setaria viridis, a widely distributed plant, was employed as a precursor to synthesize hard carbon anodes for sodium-ion batteries. However, the hard carbon derived from raw precursors contains substantial impurities, which limit the performance of the obtained hard carbon. With different chemical etching processes, the content of impurities in the resultants was reduced to varying degrees. The optimized hard carbon anode delivered a reversible capacity of 198 mAh g−1 at a current density of 0.04 A g−1. This work shows the More > Graphic Abstract

    Biomass-Derived Hard Carbon Anodes from Setaria Viridis for Na-Ion Batteries

Displaying 1-10 on page 1 of 347. Per Page