Gurram Sunitha1,*, M. N. Pushpalatha2, A. Parkavi3, Prasanthi Boyapati4, Ranjan Walia5, Rachna Kohar6, Kashif Qureshi7
Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 423-437, 2022, DOI:10.32604/iasc.2022.024757
- 15 April 2022
Abstract Crop yield is an extremely difficult trait identified using many factors like genotype, environment and their interaction. Accurate Crop Yield Prediction (CYP) necessitates the basic understanding of the functional relativity among yields and the collaborative factor. Disclosing such connection requires both wide-ranging datasets and an efficient model. The CYP is important to accomplish irrigation scheduling and assessing labor necessities for reaping and storing. Predicting yield using various kinds of irrigation is effective for optimizing resources, but CYP is a difficult process owing to the existence of distinct factors. Recently, Deep Learning (DL) approaches offer solutions… More >