Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    Suppression of cell pyroptosis by omeprazole through PDE4-mediated autophagy in gastric epithelial cells

    LIPING YE1,2,3,#, HUIYAN SUN4,#, XINHUA LIANG2,#, WENXU PAN2, LI XIANG2,3, WENJUN DU2, LANLAN GENG2, WANFU XU2,3,*, SITANG GONG1,2,3,*

    BIOCELL, Vol.47, No.12, pp. 2709-2719, 2023, DOI:10.32604/biocell.2023.044295

    Abstract Introduction: Helicobacter pylori is a risk factor for the development of peptic ulcers with autophagy dysfunction. Omeprazole was widely known as the first-line regimen for H. pylori-associated gastritis. Objectives: The objective of this work was to assess the role of omeprazole on cell pyroptosis and autophagy. Methods: The clinical samples were collected. Quantitative polymerase chain reaction, western blotting, enzyme linked immunosorbent assay, and immunofluorescence (IF) analysis were conducted to reveal the mechanism of omeprazole on cell pyroptosis and autophagy. Results: The results revealed that omeprazole could decrease cell pyroptosis, which was attributed to the downregulation of cleaved caspase-1 expression, resulting… More >

  • Open Access

    ARTICLE

    Bone marrow mesenchymal stem cell-induced autophagy ameliorates TNBS-induced experimental colitis by downregulating the NLRP3 inflammasome

    JINJIN FU1,#, XIAOYUE FENG2,#, JUAN WEI2, XIANG GENG1, YU GONG1, FENGDONG LI1, SHAOHUA ZHUANG1, JIN HUANG1, FANGYU WANG2,*

    BIOCELL, Vol.47, No.12, pp. 2627-2639, 2023, DOI:10.32604/biocell.2023.042586

    Abstract Background: This study aimed to elucidate the potential mechanisms through which bone marrow-derived mesenchymal stem cells (BM-MSCs) may be effective in alleviating experimental colitis induced by treatment with 2,4,6-trinitrobenzene-sulfonate acid (TNBS), specifically through autophagy modulation. Methods: BM-MSCs were collected from BALB/c mice for subsequent experiments. The study employed cell counting kits (CCK-8) to investigate the impact of the MSC-conditioned medium (M medium) on the proliferation of RAW264.7 macrophages. The GFP-mRFP-LC3 adenovirus was transfected into RAW264.7 to detect autophagic flux. The gene expression of cytokines was assessed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Western blot analysis was employed to… More >

  • Open Access

    ARTICLE

    LAMC2 regulates proliferation, migration, and invasion mediated by the Pl3K/AKT/mTOR pathway in oral squamous carcinoma

    FAYU SHAN1, LANLAN LIANG1, CHONG FENG1, HONGBAO XU1, ZIROU WANG1, WEILI LIU1, LINGLING PU1, ZHAOLI CHEN1, GANG CHEN2,*, XINXING WANG1,*

    Oncology Research, Vol.31, No.4, pp. 481-493, 2023, DOI:10.32604/or.2023.029064

    Abstract Background: Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Recently, Laminin Gamma 2 (LAMC2) has been shown to be abnormally expressed in OSCC; however, how LAMC2 signaling contributes to the occurrence and development of OSCC and the role of autophagy in OSCC has not been fully explored. This study aimed to analyze the role and mechanism of LAMC2 signaling in OSCC and the involvement of autophagy in OSCC. Methods: To explore the mechanism by which LAMC2 is highly expressed in OSCC, we used small interfering RNA (siRNA) to knock down LAMC2 to further observe the changes in the… More >

  • Open Access

    ARTICLE

    Mechanism of NURP1 in temozolomide resistance in hypoxia-treated glioma cells via the KDM3A/TFEB axis

    TAO LI#, XIN FU#, JIE WANG, WEI SHANG, XIAOTONG WANG, LINYUN ZHANG, JUN LI*

    Oncology Research, Vol.31, No.3, pp. 345-359, 2023, DOI:10.32604/or.2023.028724

    Abstract Temozolomide (TMZ) resistance is a major obstacle in glioma treatment. Nuclear protein-1 (NUPR1) is a regulator of glioma progression. This study investigated the mechanism of NUPR1 in TMZ resistance in hypoxia-treated glioma cells and its mechanism in modulating autophagy. We treated TMZ-resistant cells U251-TMZ and T98G-TMZ to normoxia or hypoxia and silenced NUPR1 in hypoxia-treated U251-TMZ and T98G-TMZ cells to assess cell viability, proliferation, apoptosis, LC3-II/LC3-I and p62 expressions, and autophagic flux under different concentrations of TMZ. We found that hypoxia upregulated NUPR1 expression and autophagy while NUPR1 silencing suppressed hypoxia-induced TMZ resistance and autophagy in glioma cells. We also… More > Graphic Abstract

    Mechanism of NURP1 in temozolomide resistance in hypoxia-treated glioma cells via the KDM3A/TFEB axis

  • Open Access

    ARTICLE

    Capsaicin exerts anti-benign prostatic hyperplasia effects via inhibiting androgen receptor signaling pathway

    ZICHEN SHAO1,2,#, CHUNG-YI CHEN3,#, XUZHOU CHEN1, HANWU CHEN1, MENGQIAO SU1,2, HUI SUN1,2, YIDAN LI1,2, BINGHUA TU1, ZITONG WANG1, CHI-MING LIU1,*

    BIOCELL, Vol.47, No.6, pp. 1389-1396, 2023, DOI:10.32604/biocell.2023.028222

    Abstract Background: Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and elderly men. Enlargement of the prostate causes lower urinary tract symptoms. Capsaicin is a phytochemical extracted from chili peppers and exerts many pharmacological actions, such as anti-tumor and anti-inflammatory effects. Methods: Our study investigated the effect of capsaicin in vitro and in a mouse model in vivo. A prostatic stromal myofibroblast cell line (WPMY-1) was co-incubated with testosterone (1 µM) and different concentrations of capsaicin (10–100 µM) for 24 and 48 h. Capsaicin (10–100 µM) significantly inhibited testosterone-treated WPMY-1 cell growth at 48 h by MTT assay. The… More >

  • Open Access

    ARTICLE

    Raloxifene-loaded and aptamer-bonded exosomes induce autophagic and apoptotic death in HeLa cells by enhancing the lysosomotropic effect

    OMER ERDOGAN1, GULEN MELIKE DEMIRBOLAT2, OZGE CEVIK1,*

    BIOCELL, Vol.47, No.5, pp. 1051-1063, 2023, DOI:10.32604/biocell.2023.028129

    Abstract Background: Raloxifene, a selective estrogen receptor modulator, is also known to be a lysosomotropic agent. The bioavailability of raloxifene is around 2% due to extensive hepatic transport. Exosomes are nanosized vesicles that are naturally released from cells. Method: In this study, exosomes released from HeLa cervical cancer cells were loaded with raloxifene to increase its bioavailability, and an aptamer was attached to the exosome membrane for targeting only HeLa cells. Characterization of exosomes isolated from HeLa cells was performed by transmission electron microscopy, zeta sizer, and western blotting. In addition, the cytotoxic, apoptotic, autophagic, and lysosomotropic effects of the prepared… More >

  • Open Access

    REVIEW

    Review on marine collagen peptides induce cancer cell apoptosis, necrosis, and autophagy by reducing oxidized free radicals

    YINGHUA LUO1,#, YU ZHANG2,#, TONG ZHANG2,#, YANNAN LI2, HUI XUE2, JINGLONG CAO2, WENSHUANG HOU2, JIAN LIU2, YUHE CUI2, TING XU2, CHENGHAO JIN2,3,*

    BIOCELL, Vol.47, No.5, pp. 965-975, 2023, DOI:10.32604/biocell.2023.027729

    Abstract Marine collagen peptides (MCPs) are natural products prepared by hydrolyzing marine collagen protein through a variety of chemical methods or enzymes. MCPs have a range of structures and biological activities and are widely present in marine species. MCPs also have a small molecular weight, are easily modified, and absorbed by the body. These properties have attracted great interest from researchers studying antioxidant, anti-tumor, and anti-aging activities. MCPs of specific molecular weights have significant anti-tumor activity and no toxic side effects. Thus, MCPs have the potential use as anti-cancer adjuvant drugs. Free radicals produced by oxidation are closely related to human… More >

  • Open Access

    ARTICLE

    Vitamin B3 inhibits apoptosis and promotes autophagy of islet β cells under high glucose stress

    YU ZHANG1,2, XI’AN ZHOU1,2, CHUNYAN ZHANG1,2, DENGNI LAI5, DONGBO LIU1,3,4, YANYANG WU1,2,3,4,*

    BIOCELL, Vol.47, No.4, pp. 859-868, 2023, DOI:10.32604/biocell.2023.026429

    Abstract Background: Hyperglycemia is a typical symptom of diabetes. High glucose induces apoptosis of islet β cells. While autophagy functions in cytoprotection and autophagic cell death. The interaction between autophagy and apoptosis is important in the modulation of the function of islet β cells. Vitamin B3 can induce autophagy and inhibit islet β apoptosis.Method: The mechanism of vitamin B3-mediated protective effect on the function of islet β cells was explored by the method of western blot, immunofluorescence and flow cytometry.Results: In the present study, high glucose stress increased the apoptosis rate, while vitamin B3 reduced the apoptosis rate. The effect of… More >

  • Open Access

    ARTICLE

    SPINK1 contributes to proliferation and clonal formation of HT29 cells through Beclin1 associated enhanced autophagy

    NA HU1,2,#, SHIQING ZHANG2,3,#, AQUAN JIN2, LIANYING GUO2, ZHENYUN QU2, JUN WANG2,*

    Oncology Research, Vol.30, No.2, pp. 89-97, 2022, DOI:10.32604/or.2022.027058

    Abstract We aimed to explore the molecular mechanism that were involved in SPINK1-induced proliferation and clonogenic survival of human colorectal carcinoma (CRC) HT29 cells. Initially, we generated HT29 cells either permanently silencing or overexpressing SPINK1 protein. The results showed that SPINK1 overexpression (OE) significantly stimulated the proliferation and clonal formation of HT29 cells at the varied time points. Secondly, we found SPINK1 OE enhanced the ratio of LC3II/LC3I and the level of autophagy-related gene 5 (ATG5), whereas SPINK1 knockdown (Kd) reversed the above outcome under normal culturing and/or fasting condition in the cells, indicating its role in autophagy enhancement. Moreover, LC3-GFP-transfected… More >

  • Open Access

    REVIEW

    Research progress of protein phosphatase 2A in cellular autophagy

    HONGMEI WU#, DI LI#, YUANYUAN HUANG, RUYUAN LIU, XIAONIAN ZHU*

    BIOCELL, Vol.47, No.3, pp. 485-491, 2023, DOI:10.32604/biocell.2023.026049

    Abstract Autophagy is an important metabolic process. It facilitates the recycling of intracellular substances by removing, degrading, and recycling damaged organelles, proteins, and lipids in lysosomal vacuoles and plays an important role in maintaining cellular homeostasis. Protein phosphatase 2A (PP2A) is a key serine/threonine phosphatase and one of the main cell cycle regulatory enzymes. As PP2A activity is essential for the cell, dysfunction or dysregulation of PP2A can affect various physiological processes, including autophagy. Here, we review the autophagy-related factors that target PP2A in different diseases, such as breast cancer, colorectal cancer, liver cancer, and Alzheimer’s disease, to maintain cell homeostasis… More >

Displaying 11-20 on page 2 of 52. Per Page