Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    S. Jayanthi*, S. Prasanna Devi

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2137-2158, 2024, DOI:10.32604/cmc.2024.045975 - 27 February 2024

    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate… More >

  • Open Access

    ARTICLE

    AID4I: An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning

    Anıl Sezgin1,2,*, Aytuğ Boyacı3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2121-2143, 2023, DOI:10.32604/cmc.2023.040287 - 30 August 2023

    Abstract By identifying and responding to any malicious behavior that could endanger the system, the Intrusion Detection System (IDS) is crucial for preserving the security of the Industrial Internet of Things (IIoT) network. The benefit of anomaly-based IDS is that they are able to recognize zero-day attacks due to the fact that they do not rely on a signature database to identify abnormal activity. In order to improve control over datasets and the process, this study proposes using an automated machine learning (AutoML) technique to automate the machine learning processes for IDS. Our ground-breaking architecture, known… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment

    Fadwa Alrowais1, Sami Althahabi2, Saud S. Alotaibi3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 687-700, 2023, DOI:10.32604/csse.2023.030188 - 16 August 2022

    Abstract Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM)… More >

  • Open Access

    ARTICLE

    Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals

    Jian Liu1, Yipeng Du1, Xiang Wang1,*, Wuguang Yue2, Jim Feng3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1995-2011, 2022, DOI:10.32604/cmc.2022.029073 - 18 May 2022

    Abstract Epilepsy is a common neurological disease and severely affects the daily life of patients. The automatic detection and diagnosis system of epilepsy based on electroencephalogram (EEG) is of great significance to help patients with epilepsy return to normal life. With the development of deep learning technology and the increase in the amount of EEG data, the performance of deep learning based automatic detection algorithm for epilepsy EEG has gradually surpassed the traditional hand-crafted approaches. However, the neural architecture design for epilepsy EEG analysis is time-consuming and laborious, and the designed structure is difficult to adapt… More >

  • Open Access

    ARTICLE

    Dynamic Hyperparameter Allocation under Time Constraints for Automated Machine Learning

    Jeongcheol Lee, Sunil Ahn*, Hyunseob Kim, Jongsuk Ruth Lee

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 255-277, 2022, DOI:10.32604/iasc.2022.018558 - 03 September 2021

    Abstract Automated hyperparameter optimization (HPO) is a crucial and time-consuming part in the automatic generation of efficient machine learning models. Previous studies could be classified into two major categories in terms of reducing training overhead: (1) sampling a promising hyperparameter configuration and (2) pruning non-promising configurations. These adaptive sampling and resource scheduling are combined to reduce cost, increasing the number of evaluations done on more promising configurations to find the best model in a given time. That is, these strategies are preferred to identify the best-performing models at an early stage within a certain deadline. Although… More >

Displaying 1-10 on page 1 of 6. Per Page