Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Fully Automated Density-Based Clustering Method

    Bilal Bataineh*, Ahmad A. Alzahrani

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1833-1851, 2023, DOI:10.32604/cmc.2023.039923 - 30 August 2023

    Abstract Cluster analysis is a crucial technique in unsupervised machine learning, pattern recognition, and data analysis. However, current clustering algorithms suffer from the need for manual determination of parameter values, low accuracy, and inconsistent performance concerning data size and structure. To address these challenges, a novel clustering algorithm called the fully automated density-based clustering method (FADBC) is proposed. The FADBC method consists of two stages: parameter selection and cluster extraction. In the first stage, a proposed method extracts optimal parameters for the dataset, including the epsilon size and a minimum number of points thresholds. These parameters More >

Displaying 1-10 on page 1 of 1. Per Page