Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970 - 29 November 2023

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual… More >

  • Open Access

    ARTICLE

    Predicting Carpark Prices Indices in Hong Kong Using AutoML

    Rita Yi Man Li1, Lingxi Song2, Bo Li2,3, M. James C. Crabbe4,5,6, Xiao-Guang Yue7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2247-2282, 2023, DOI:10.32604/cmes.2022.020930 - 20 September 2022

    Abstract The aims of this study were threefold: 1) study the research gap in carpark and price index via big data and natural language processing, 2) examine the research gap of carpark indices, and 3) construct carpark price indices via repeat sales methods and predict carpark indices via the AutoML. By researching the keyword “carpark” in Google Scholar, the largest electronic academic database that covers Web of Science and Scopus indexed articles, this study obtained 999 articles and book chapters from 1910 to 2019. It confirmed that most carpark research threw light on multi-storey carparks, management… More > Graphic Abstract

    Predicting Carpark Prices Indices in Hong Kong Using AutoML

  • Open Access

    ARTICLE

    Automated Deep Learning of COVID-19 and Pneumonia Detection Using Google AutoML

    Saiful Izzuan Hussain*, Nadiah Ruza

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1143-1156, 2022, DOI:10.32604/iasc.2022.020508 - 22 September 2021

    Abstract Coronavirus (COVID-19) is a pandemic disease classified by the World Health Organization. This virus triggers several coughing problems (e.g., flu) that include symptoms of fever, cough, and pneumonia, in extreme cases. The human sputum or blood samples are used to detect this virus, and the result is normally available within a few hours or at most days. In this research, we suggest the implementation of automated deep learning without require handcrafted expertise of data scientist. The model developed aims to give radiologists a second-opinion interpretation and to minimize clinicians’ workload substantially and help them diagnose More >

  • Open Access

    ARTICLE

    Dynamic Hyperparameter Allocation under Time Constraints for Automated Machine Learning

    Jeongcheol Lee, Sunil Ahn*, Hyunseob Kim, Jongsuk Ruth Lee

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 255-277, 2022, DOI:10.32604/iasc.2022.018558 - 03 September 2021

    Abstract Automated hyperparameter optimization (HPO) is a crucial and time-consuming part in the automatic generation of efficient machine learning models. Previous studies could be classified into two major categories in terms of reducing training overhead: (1) sampling a promising hyperparameter configuration and (2) pruning non-promising configurations. These adaptive sampling and resource scheduling are combined to reduce cost, increasing the number of evaluations done on more promising configurations to find the best model in a given time. That is, these strategies are preferred to identify the best-performing models at an early stage within a certain deadline. Although… More >

Displaying 1-10 on page 1 of 4. Per Page