Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Eye-Tracking Based Autism Spectrum Disorder Diagnosis Using Chaotic Butterfly Optimization with Deep Learning Model

    Tamilvizhi Thanarajan1, Youseef Alotaibi2, Surendran Rajendran3,*, Krishnaraj Nagappan4

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1995-2013, 2023, DOI:10.32604/cmc.2023.039644 - 30 August 2023

    Abstract Autism spectrum disorder (ASD) can be defined as a neurodevelopmental condition or illness that can disturb kids who have heterogeneous characteristics, like changes in behavior, social disabilities, and difficulty communicating with others. Eye tracking (ET) has become a useful method to detect ASD. One vital aspect of moral erudition is the aptitude to have common visual attention. The eye-tracking approach offers valuable data regarding the visual behavior of children for accurate and early detection. Eye-tracking data can offer insightful information about the behavior and thought processes of people with ASD, but it is important to… More >

  • Open Access

    ARTICLE

    Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis

    Yin Liang1,*, Gaoxu Xu1, Sadaqat ur Rehman2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4645-4661, 2022, DOI:10.32604/cmc.2022.026999 - 21 April 2022

    Abstract Whole brain functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used in the diagnosis of brain disorders such as autism spectrum disorder (ASD). Recently, an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification. However, the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification. In this paper, we proposed a multi-scale attention-based deep neural network (MSA-DNN) model to classify FC… More >

  • Open Access

    ARTICLE

    Autism Spectrum Disorder Diagnosis Using Ensemble ML and Max Voting Techniques

    A. Arunkumar1,*, D. Surendran2

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 389-404, 2022, DOI:10.32604/csse.2022.020256 - 08 October 2021

    Abstract Difficulty in communicating and interacting with other people are mainly due to the neurological disorder called autism spectrum disorder (ASD) diseases. These diseases can affect the nerves at any stage of the human being in childhood, adolescence, and adulthood. ASD is known as a behavioral disease due to the appearances of symptoms over the first two years that continue until adulthood. Most of the studies prove that the early detection of ASD helps improve the behavioral characteristics of patients with ASD. The detection of ASD is a very challenging task among various researchers. Machine learning… More >

Displaying 1-10 on page 1 of 3. Per Page