Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    Multi-Modality and Feature Fusion-Based COVID-19 Detection Through Long Short-Term Memory

    Noureen Fatima1, Rashid Jahangir2, Ghulam Mujtaba1, Adnan Akhunzada3,*, Zahid Hussain Shaikh4, Faiza Qureshi1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4357-4374, 2022, DOI:10.32604/cmc.2022.023830 - 21 April 2022

    Abstract The Coronavirus Disease 2019 (COVID-19) pandemic poses the worldwide challenges surpassing the boundaries of country, religion, race, and economy. The current benchmark method for the detection of COVID-19 is the reverse transcription polymerase chain reaction (RT-PCR) testing. Nevertheless, this testing method is accurate enough for the diagnosis of COVID-19. However, it is time-consuming, expensive, expert-dependent, and violates social distancing. In this paper, this research proposed an effective multi-modality-based and feature fusion-based (MMFF) COVID-19 detection technique through deep neural networks. In multi-modality, we have utilized the cough samples, breathe samples and sound samples of healthy as… More >

  • Open Access

    ARTICLE

    Intelligent Audio Signal Processing for Detecting Rainforest Species Using Deep Learning

    Rakesh Kumar1, Meenu Gupta1, Shakeel Ahmed2,*, Abdulaziz Alhumam2, Tushar Aggarwal1

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 693-706, 2022, DOI:10.32604/iasc.2022.019811 - 22 September 2021

    Abstract Hearing a species in a tropical rainforest is much easier than seeing them. If someone is in the forest, he might not be able to look around and see every type of bird and frog that are there but they can be heard. A forest ranger might know what to do in these situations and he/she might be an expert in recognizing the different type of insects and dangerous species that are out there in the forest but if a common person travels to a rain forest for an adventure, he might not even know… More >

Displaying 1-10 on page 1 of 3. Per Page