Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network

    Hina Bhanbhro1,*, Yew Kwang Hooi1, Mohammad Nordin Bin Zakaria1, Worapan Kusakunniran2, Zaira Hassan Amur1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2243-2259, 2024, DOI:10.32604/cmc.2024.052138 - 18 November 2024

    Abstract Object detection has made a significant leap forward in recent years. However, the detection of small objects continues to be a great difficulty for various reasons, such as they have a very small size and they are susceptible to missed detection due to background noise. Additionally, small object information is affected due to the downsampling operations. Deep learning-based detection methods have been utilized to address the challenge posed by small objects. In this work, we propose a novel method, the Multi-Convolutional Block Attention Network (MCBAN), to increase the detection accuracy of minute objects aiming to… More >

  • Open Access

    ARTICLE

    Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network

    Bolin Guo1,2, Shi Qiu1,*, Pengchang Zhang1, Xingjia Tang3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1809-1833, 2024, DOI:10.32604/cmc.2024.056706 - 15 October 2024

    Abstract Mural paintings hold significant historical information and possess substantial artistic and cultural value. However, murals are inevitably damaged by natural environmental factors such as wind and sunlight, as well as by human activities. For this reason, the study of damaged areas is crucial for mural restoration. These damaged regions differ significantly from undamaged areas and can be considered abnormal targets. Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections. Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods. Thus, this study employs hyperspectral imaging… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    ARTICLE

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

    Kelan Ren, Facheng Yan, Honghua Chen, Wen Jiang, Bin Wei, Mingshu Zhang*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 789-807, 2024, DOI:10.32604/cmc.2024.055624 - 15 October 2024

    Abstract The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns. Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures. This paper focuses on effectively mining and utilizing sentiment-semantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network (SentiHAN) for cross-target stance detection. SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various… More > Graphic Abstract

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

  • Open Access

    ARTICLE

    Pyramid Separable Channel Attention Network for Single Image Super-Resolution

    Congcong Ma1,3, Jiaqi Mi2, Wanlin Gao1,3, Sha Tao1,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4687-4701, 2024, DOI:10.32604/cmc.2024.055803 - 12 September 2024

    Abstract Single Image Super-Resolution (SISR) technology aims to reconstruct a clear, high-resolution image with more information from an input low-resolution image that is blurry and contains less information. This technology has significant research value and is widely used in fields such as medical imaging, satellite image processing, and security surveillance. Despite significant progress in existing research, challenges remain in reconstructing clear and complex texture details, with issues such as edge blurring and artifacts still present. The visual perception effect still needs further enhancement. Therefore, this study proposes a Pyramid Separable Channel Attention Network (PSCAN) for the… More >

  • Open Access

    ARTICLE

    GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning

    Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui, Kunli Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4767-4790, 2024, DOI:10.32604/cmc.2024.053506 - 12 September 2024

    Abstract The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction, knowledge reasoning, and diagnostic classification. In the… More >

  • Open Access

    ARTICLE

    A Hierarchical Two-Level Feature Fusion Approach for SMS Spam Filtering

    Hussein Alaa Al-Kabbi1,2, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh3

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 665-682, 2024, DOI:10.32604/iasc.2024.050452 - 06 September 2024

    Abstract SMS spam poses a significant challenge to maintaining user privacy and security. Recently, spammers have employed fraudulent writing styles to bypass spam detection systems. This paper introduces a novel two-level detection system that utilizes deep learning techniques for effective spam identification to address the challenge of sophisticated SMS spam. The system comprises five steps, beginning with the preprocessing of SMS data. RoBERTa word embedding is then applied to convert text into a numerical format for deep learning analysis. Feature extraction is performed using a Convolutional Neural Network (CNN) for word-level analysis and a Bidirectional Long… More >

  • Open Access

    ARTICLE

    Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks

    Ayesha Khaliq1, Salman Afsar Awan1, Fahad Ahmad2,*, Muhammad Azam Zia1, Muhammad Zafar Iqbal3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3221-3242, 2024, DOI:10.32604/cmc.2024.053488 - 15 August 2024

    Abstract The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity. Current approaches in Extractive Text Summarization (ETS) leverage the modeling of inter-sentence relationships, a task of paramount importance in producing coherent summaries. This study introduces an innovative model that integrates Graph Attention Networks (GATs) with Transformer-based Bidirectional Encoder Representations from Transformers (BERT) and Latent Dirichlet Allocation (LDA), further enhanced by Term Frequency-Inverse Document Frequency (TF-IDF) values, to improve sentence selection by capturing comprehensive topical information. Our… More >

  • Open Access

    ARTICLE

    HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning

    Zhihui Song, Jinchen Xu, Kewei Li, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4573-4601, 2024, DOI:10.32604/cmc.2024.049310 - 20 June 2024

    Abstract Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations. However, due to limitations in code representation and neural network design, the validity and practicality of the model still need to be improved. Additionally, due to differences in programming languages, most methods lack cross-language detection generality. To address these issues, in this paper, we analyze the shortcomings of previous code representations and neural networks. We propose a novel hierarchical code representation that combines Concrete Syntax Trees (CST)… More >

  • Open Access

    ARTICLE

    Carbon Emission Factors Prediction of Power Grid by Using Graph Attention Network

    Xin Shen1, Jiahao Li1, Yujun Yin1, Jianlin Tang2,3,*, Weibin Lin2,3, Mi Zhou2,3

    Energy Engineering, Vol.121, No.7, pp. 1945-1961, 2024, DOI:10.32604/ee.2024.048388 - 11 June 2024

    Abstract Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice, which is of immense importance in mobilizing the entire society to reduce carbon emissions. The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid. Therefore, it cannot provide carbon factor information beforehand. To address this issue, a prediction model based on the graph attention network is proposed. The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised More >

Displaying 1-10 on page 1 of 31. Per Page