Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (263)
  • Open Access

    ARTICLE

    Enhanced BEV Scene Segmentation: De-Noise Channel Attention for Resource-Constrained Environments

    Argho Dey1, Yunfei Yin1,2,*, Zheng Yuan1, Zhiwen Zeng1, Xianjian Bao3, Md Minhazul Islam1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074122 - 10 February 2026

    Abstract Autonomous vehicles rely heavily on accurate and efficient scene segmentation for safe navigation and efficient operations. Traditional Bird’s Eye View (BEV) methods on semantic scene segmentation, which leverage multimodal sensor fusion, often struggle with noisy data and demand high-performance GPUs, leading to sensor misalignment and performance degradation. This paper introduces an Enhanced Channel Attention BEV (ECABEV), a novel approach designed to address the challenges under insufficient GPU memory conditions. ECABEV integrates camera and radar data through a de-noise enhanced channel attention mechanism, which utilizes global average and max pooling to effectively filter out noise while… More >

  • Open Access

    ARTICLE

    An Integrated Attention-BiLSTM Approach for Probabilistic Remaining Useful Life Prediction

    Bo Zhu#, Enzhi Dong#, Zhonghua Cheng*, Kexin Jiang, Chiming Guo, Shuai Yue

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074009 - 10 February 2026

    Abstract Accurate prediction of remaining useful life serves as a reliable basis for maintenance strategies, effectively reducing both the frequency of failures and associated costs. As a core component of PHM, RUL prediction plays a crucial role in preventing equipment failures and optimizing maintenance decision-making. However, deep learning models often falter when processing raw, noisy temporal signals, fail to quantify prediction uncertainty, and face challenges in effectively capturing the nonlinear dynamics of equipment degradation. To address these issues, this study proposes a novel deep learning framework. First, a new bidirectional long short-term memory network integrated with More >

  • Open Access

    ARTICLE

    Semantic-Guided Stereo Matching Network Based on Parallax Attention Mechanism and SegFormer

    Zeyuan Chen, Yafei Xie, Jinkun Li, Song Wang, Yingqiang Ding*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073846 - 10 February 2026

    Abstract Stereo matching is a pivotal task in computer vision, enabling precise depth estimation from stereo image pairs, yet it encounters challenges in regions with reflections, repetitive textures, or fine structures. In this paper, we propose a Semantic-Guided Parallax Attention Stereo Matching Network (SGPASMnet) that can be trained in unsupervised manner, building upon the Parallax Attention Stereo Matching Network (PASMnet). Our approach leverages unsupervised learning to address the scarcity of ground truth disparity in stereo matching datasets, facilitating robust training across diverse scene-specific datasets and enhancing generalization. SGPASMnet incorporates two novel components: a Cross-Scale Feature Interaction… More >

  • Open Access

    ARTICLE

    SIM-Net: A Multi-Scale Attention-Guided Deep Learning Framework for High-Precision PCB Defect Detection

    Ping Fang, Mengjun Tong*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073272 - 10 February 2026

    Abstract Defect detection in printed circuit boards (PCB) remains challenging due to the difficulty of identifying small-scale defects, the inefficiency of conventional approaches, and the interference from complex backgrounds. To address these issues, this paper proposes SIM-Net, an enhanced detection framework derived from YOLOv11. The model integrates SPDConv to preserve fine-grained features for small object detection, introduces a novel convolutional partial attention module (C2PAM) to suppress redundant background information and highlight salient regions, and employs a multi-scale fusion network (MFN) with a multi-grain contextual module (MGCT) to strengthen contextual representation and accelerate inference. Experimental evaluations demonstrate More >

  • Open Access

    ARTICLE

    The Missing Data Recovery Method Based on Improved GAN

    Su Zhang1, Song Deng1,*, Qingsheng Liu2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072777 - 10 February 2026

    Abstract Accurate and reliable power system data are fundamental for critical operations such as grid monitoring, fault diagnosis, and load forecasting, underpinned by increasing intelligentization and digitalization. However, data loss and anomalies frequently compromise data integrity in practical settings, significantly impacting system operational efficiency and security. Most existing data recovery methods require complete datasets for training, leading to substantial data and computational demands and limited generalization. To address these limitations, this study proposes a missing data imputation model based on an improved Generative Adversarial Network (BAC-GAN). Within the BAC-GAN framework, the generator utilizes Bidirectional Long Short-Term… More >

  • Open Access

    ARTICLE

    YOLO-SPDNet: Multi-Scale Sequence and Attention-Based Tomato Leaf Disease Detection Model

    Meng Wang1, Jinghan Cai1, Wenzheng Liu1, Xue Yang1, Jingjing Zhang1, Qiangmin Zhou1, Fanzhen Wang1, Hang Zhang1,*, Tonghai Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075541 - 30 January 2026

    Abstract Tomato is a major economic crop worldwide, and diseases on tomato leaves can significantly reduce both yield and quality. Traditional manual inspection is inefficient and highly subjective, making it difficult to meet the requirements of early disease identification in complex natural environments. To address this issue, this study proposes an improved YOLO11-based model, YOLO-SPDNet (Scale Sequence Fusion, Position-Channel Attention, and Dual Enhancement Network). The model integrates the SEAM (Self-Ensembling Attention Mechanism) semantic enhancement module, the MLCA (Mixed Local Channel Attention) lightweight attention mechanism, and the SPA (Scale-Position-Detail Awareness) module composed of SSFF (Scale Sequence Feature… More >

  • Open Access

    ARTICLE

    Superpixel-Aware Transformer with Attention-Guided Boundary Refinement for Salient Object Detection

    Burhan Baraklı1,*, Can Yüzkollar2, Tuğrul Taşçı3, İbrahim Yıldırım2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074292 - 29 January 2026

    Abstract Salient object detection (SOD) models struggle to simultaneously preserve global structure, maintain sharp object boundaries, and sustain computational efficiency in complex scenes. In this study, we propose SPSALNet, a task-driven two-stage (macro–micro) architecture that restructures the SOD process around superpixel representations. In the proposed approach, a “split-and-enhance” principle, introduced to our knowledge for the first time in the SOD literature, hierarchically classifies superpixels and then applies targeted refinement only to ambiguous or error-prone regions. At the macro stage, the image is partitioned into content-adaptive superpixel regions, and each superpixel is represented by a high-dimensional region-level… More >

  • Open Access

    ARTICLE

    TransCarbonNet: Multi-Day Grid Carbon Intensity Forecasting Using Hybrid Self-Attention and Bi-LSTM Temporal Fusion for Sustainable Energy Management

    Amel Ksibi*, Hatoon Albadah, Ghadah Aldehim, Manel Ayadi

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073533 - 29 January 2026

    Abstract Sustainable energy systems will entail a change in the carbon intensity projections, which should be carried out in a proper manner to facilitate the smooth running of the grid and reduce greenhouse emissions. The present article outlines the TransCarbonNet, a novel hybrid deep learning framework with self-attention characteristics added to the bidirectional Long Short-Term Memory (Bi-LSTM) network to forecast the carbon intensity of the grid several days. The proposed temporal fusion model not only learns the local temporal interactions but also the long-term patterns of the carbon emission data; hence, it is able to give… More >

  • Open Access

    ARTICLE

    Attention-Enhanced ResNet-LSTM Model with Wind-Regime Clustering for Wind Speed Forecasting

    Weiqi Mao1,2,3, Enbo Yu1,*, Guoji Xu3, Xiaozhen Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069733 - 29 January 2026

    Abstract Accurate wind speed prediction is crucial for stabilizing power grids with high wind energy penetration. This study presents a novel machine learning model that integrates clustering, deep learning, and transfer learning to mitigate accuracy degradation in 24-h forecasting. Initially, an optimized DB-SCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm clusters wind fields based on wind direction, probability density, and spectral features, enhancing physical interpretability and reducing training complexity. Subsequently, a ResNet (Residual Network) extracts multi-scale patterns from decomposed wind signals, while transfer learning adapts the backbone network across clusters, cutting training time by over… More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

Displaying 1-10 on page 1 of 263. Per Page