Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (258)
  • Open Access

    ARTICLE

    YOLO-SPDNet: Multi-Scale Sequence and Attention-Based Tomato Leaf Disease Detection Model

    Meng Wang1, Jinghan Cai1, Wenzheng Liu1, Xue Yang1, Jingjing Zhang1, Qiangmin Zhou1, Fanzhen Wang1, Hang Zhang1,*, Tonghai Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075541 - 30 January 2026

    Abstract Tomato is a major economic crop worldwide, and diseases on tomato leaves can significantly reduce both yield and quality. Traditional manual inspection is inefficient and highly subjective, making it difficult to meet the requirements of early disease identification in complex natural environments. To address this issue, this study proposes an improved YOLO11-based model, YOLO-SPDNet (Scale Sequence Fusion, Position-Channel Attention, and Dual Enhancement Network). The model integrates the SEAM (Self-Ensembling Attention Mechanism) semantic enhancement module, the MLCA (Mixed Local Channel Attention) lightweight attention mechanism, and the SPA (Scale-Position-Detail Awareness) module composed of SSFF (Scale Sequence Feature… More >

  • Open Access

    ARTICLE

    Superpixel-Aware Transformer with Attention-Guided Boundary Refinement for Salient Object Detection

    Burhan Baraklı1,*, Can Yüzkollar2, Tuğrul Taşçı3, İbrahim Yıldırım2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074292 - 29 January 2026

    Abstract Salient object detection (SOD) models struggle to simultaneously preserve global structure, maintain sharp object boundaries, and sustain computational efficiency in complex scenes. In this study, we propose SPSALNet, a task-driven two-stage (macro–micro) architecture that restructures the SOD process around superpixel representations. In the proposed approach, a “split-and-enhance” principle, introduced to our knowledge for the first time in the SOD literature, hierarchically classifies superpixels and then applies targeted refinement only to ambiguous or error-prone regions. At the macro stage, the image is partitioned into content-adaptive superpixel regions, and each superpixel is represented by a high-dimensional region-level… More >

  • Open Access

    ARTICLE

    TransCarbonNet: Multi-Day Grid Carbon Intensity Forecasting Using Hybrid Self-Attention and Bi-LSTM Temporal Fusion for Sustainable Energy Management

    Amel Ksibi*, Hatoon Albadah, Ghadah Aldehim, Manel Ayadi

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073533 - 29 January 2026

    Abstract Sustainable energy systems will entail a change in the carbon intensity projections, which should be carried out in a proper manner to facilitate the smooth running of the grid and reduce greenhouse emissions. The present article outlines the TransCarbonNet, a novel hybrid deep learning framework with self-attention characteristics added to the bidirectional Long Short-Term Memory (Bi-LSTM) network to forecast the carbon intensity of the grid several days. The proposed temporal fusion model not only learns the local temporal interactions but also the long-term patterns of the carbon emission data; hence, it is able to give… More >

  • Open Access

    ARTICLE

    Attention-Enhanced ResNet-LSTM Model with Wind-Regime Clustering for Wind Speed Forecasting

    Weiqi Mao1,2,3, Enbo Yu1,*, Guoji Xu3, Xiaozhen Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069733 - 29 January 2026

    Abstract Accurate wind speed prediction is crucial for stabilizing power grids with high wind energy penetration. This study presents a novel machine learning model that integrates clustering, deep learning, and transfer learning to mitigate accuracy degradation in 24-h forecasting. Initially, an optimized DB-SCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm clusters wind fields based on wind direction, probability density, and spectral features, enhancing physical interpretability and reducing training complexity. Subsequently, a ResNet (Residual Network) extracts multi-scale patterns from decomposed wind signals, while transfer learning adapts the backbone network across clusters, cutting training time by over… More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026

    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open Access

    ARTICLE

    Integrating Attention Mechanism with Code Structural Affinity and Execution Context Correlation for Automated Bug Repair

    Jinfeng Ji1, Geunseok Yang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071733 - 12 January 2026

    Abstract Automated Program Repair (APR) techniques have shown significant potential in mitigating the cost and complexity associated with debugging by automatically generating corrective patches for software defects. Despite considerable progress in APR methodologies, existing approaches frequently lack contextual awareness of runtime behaviors and structural intricacies inherent in buggy source code. In this paper, we propose a novel APR approach that integrates attention mechanisms within an autoencoder-based framework, explicitly utilizing structural code affinity and execution context correlation derived from stack trace analysis. Our approach begins with an innovative preprocessing pipeline, where code segments and stack traces are… More >

  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

  • Open Access

    ARTICLE

    Speech Emotion Recognition Based on the Adaptive Acoustic Enhancement and Refined Attention Mechanism

    Jun Li1, Chunyan Liang1,*, Zhiguo Liu1, Fengpei Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071011 - 12 January 2026

    Abstract To enhance speech emotion recognition capability, this study constructs a speech emotion recognition model integrating the adaptive acoustic mixup (AAM) and improved coordinate and shuffle attention (ICASA) methods. The AAM method optimizes data augmentation by combining a sample selection strategy and dynamic interpolation coefficients, thus enabling information fusion of speech data with different emotions at the acoustic level. The ICASA method enhances feature extraction capability through dynamic fusion of the improved coordinate attention (ICA) and shuffle attention (SA) techniques. The ICA technique reduces computational overhead by employing depth-separable convolution and an h-swish activation function and More >

  • Open Access

    ARTICLE

    A Hierarchical Attention Framework for Business Information Systems: Theoretical Foundation and Proof-of-Concept Implementation

    Sabina-Cristiana Necula*, Napoleon-Alexandru Sireteanu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070861 - 09 December 2025

    Abstract Modern business information systems face significant challenges in managing heterogeneous data sources, integrating disparate systems, and providing real-time decision support in complex enterprise environments. Contemporary enterprises typically operate 200+ interconnected systems, with research indicating that 52% of organizations manage three or more enterprise content management systems, creating information silos that reduce operational efficiency by up to 35%. While attention mechanisms have demonstrated remarkable success in natural language processing and computer vision, their systematic application to business information systems remains largely unexplored. This paper presents the theoretical foundation for a Hierarchical Attention-Based Business Information System (HABIS)… More >

Displaying 1-10 on page 1 of 258. Per Page