Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (140)
  • Open Access

    ARTICLE

    Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset, Methodology and Evaluation

    Shiwen Song, Rui Zhang, Min Hu*, Feiyao Huang

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5243-5271, 2024, DOI:10.32604/cmc.2024.050879

    Abstract Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-modality images, the use of multi-modality images for fine-grained recognition has become a promising technology. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the image, resulting in a… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

  • Open Access

    ARTICLE

    Recommendation System Based on Perceptron and Graph Convolution Network

    Zuozheng Lian1,2, Yongchao Yin1, Haizhen Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3939-3954, 2024, DOI:10.32604/cmc.2024.049780

    Abstract The relationship between users and items, which cannot be recovered by traditional techniques, can be extracted by the recommendation algorithm based on the graph convolution network. The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data. This paper presents a new approach to address such issues, utilizing the graph convolution network to extract association relations. The proposed approach mainly includes three modules: Embedding layer, forward propagation layer, and score prediction layer. The embedding layer models users and items according to their interaction information and… More >

  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Rapid and Accurate Identification of Concrete Surface Cracks via a Lightweight & Efficient YOLOv3 Algorithm

    Haoan Gu1, Kai Zhu1, Alfred Strauss2, Yehui Shi3,4, Dragoslav Sumarac5, Maosen Cao1,*

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 363-380, 2024, DOI:10.32604/sdhm.2024.042388

    Abstract Concrete materials and structures are extensively used in transformation infrastructure and they usually bear cracks during their long-term operation. Detecting cracks using deep-learning algorithms like YOLOv3 (You Only Look Once version 3) is a new trend to pursue intelligent detection of concrete surface cracks. YOLOv3 is a typical deep-learning algorithm used for object detection. Owing to its generality, YOLOv3 lacks specific efficiency and accuracy in identifying concrete surface cracks. An improved algorithm based on YOLOv3, specialized in the rapid and accurate identification of concrete surface cracks is worthy of investigation. This study proposes a tailored… More >

  • Open Access

    ARTICLE

    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access

    ARTICLE

    A New Malicious Code Classification Method for the Security of Financial Software

    Xiaonan Li1,2, Qiang Wang1, Conglai Fan2,3, Wei Zhan1, Mingliang Zhang4,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 773-792, 2024, DOI:10.32604/csse.2024.039849

    Abstract The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software. The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients. Nevertheless, present detection models encounter limitations in their ability to identify malevolent code and its variations, all while encompassing a multitude of parameters. To overcome these obstacles, we introduce a lean model for classifying families of malevolent code, formulated on Ghost-DenseNet-SE. This model integrates the Ghost module, DenseNet, and the squeeze-and-excitation (SE) channel domain attention mechanism. It substitutes the… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

  • Open Access

    ARTICLE

    YOLO-MFD: Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head

    Zhongyuan Zhang, Wenqiu Zhu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2547-2563, 2024, DOI:10.32604/cmc.2024.048755

    Abstract Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales, limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally, these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the prevalent issues faced in remote sensing imagery… More >

Displaying 1-10 on page 1 of 140. Per Page