Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Multi-Level Feature-Based Ensemble Model for Target-Related Stance Detection

    Shi Li1, Xinyan Cao1, *, Yiting Nan2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 777-788, 2020, DOI:10.32604/cmc.2020.010870 - 23 July 2020

    Abstract Stance detection is the task of attitude identification toward a standpoint. Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting. Moreover, because the target is not always mentioned in the text, most methods have ignored target information. In order to solve these problems, we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory (LSTM) and the excellent extracting performance of convolutional neural networks (CNNs). The method can obtain multi-level features that consider both local More >

Displaying 1-10 on page 1 of 1. Per Page