Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (477)
  • Open Access

    ARTICLE

    Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for Clustered IoT Driven Ubiquitous Computing System

    Reda Salama1, Mahmoud Ragab1,2,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2917-2932, 2023, DOI:10.32604/csse.2023.037016 - 03 April 2023

    Abstract In the Internet of Things (IoT) based system, the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems (UCS). The UCS necessitates heterogeneity, management level, and data transmission for distributed users. Simultaneously, security remains a major issue in the IoT-driven UCS. Besides, energy-limited IoT devices need an effective clustering strategy for optimal energy utilization. The recent developments of explainable artificial intelligence (XAI) concepts can be employed to effectively design intrusion detection systems (IDS) for accomplishing security in UCS. In this view, this study designs a novel… More >

  • Open Access

    ARTICLE

    Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds

    Po-Yuan Yang1,*, Yu-Cheng Liao2, Fu-I Chou2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2861-2880, 2023, DOI:10.32604/csse.2023.036810 - 03 April 2023

    Abstract Aquaculture has long been a critical economic sector in Taiwan. Since a key factor in aquaculture production efficiency is water quality, an effective means of monitoring the dissolved oxygen content (DOC) of aquaculture water is essential. This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality. Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality. Since aquaculture water quality depends on a continuous interaction among multiple factors, and the current state is correlated… More >

  • Open Access

    ARTICLE

    Heap Based Optimization with Deep Quantum Neural Network Based Decision Making on Smart Healthcare Applications

    Iyad Katib1, Mahmoud Ragab2,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3749-3765, 2023, DOI:10.32604/csse.2023.036796 - 03 April 2023

    Abstract The concept of smart healthcare has seen a gradual increase with the expansion of information technology. Smart healthcare will use a new generation of information technologies, like artificial intelligence, the Internet of Things (IoT), cloud computing, and big data, to transform the conventional medical system in an all-around way, making healthcare highly effective, more personalized, and more convenient. This work designs a new Heap Based Optimization with Deep Quantum Neural Network (HBO-DQNN) model for decision-making in smart healthcare applications. The presented HBO-DQNN model majorly focuses on identifying and classifying healthcare data. In the presented HBO-DQNN… More >

  • Open Access

    ARTICLE

    Fuzzy Logic-Based System for Liver Fibrosis Disease

    Tamim Alkhalifah1,*, Jimmy Singla2, Fahad Alurise1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3559-3582, 2023, DOI:10.32604/csse.2023.036534 - 03 April 2023

    Abstract The diagnosis of liver fibrosis (LF) is crucial as it is a deadly and life-threatening disease. Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system, which helps to take decisions about patients’ health as experts can. The historical data of a patient’s health can have vagueness, inaccurate, and can also have missing values. The fuzzy logic theory can deal with these issues in the dataset. In this paper, a multilayer fuzzy expert system is developed to diagnose LF. The model is created by using multiple layers of… More >

  • Open Access

    ARTICLE

    Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records

    Saeed Ali Alsareii1, Muhammad Awais2,*, Abdulrahman Manaa Alamri1, Mansour Yousef AlAsmari1, Muhammad Irfan3, Mohsin Raza2, Umer Manzoor4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3715-3728, 2023, DOI:10.32604/csse.2023.035687 - 03 April 2023

    Abstract Obesity is a critical health condition that severely affects an individual’s quality of life and well-being. The occurrence of obesity is strongly associated with extreme health conditions, such as cardiac diseases, diabetes, hypertension, and some types of cancer. Therefore, it is vital to avoid obesity and or reverse its occurrence. Incorporating healthy food habits and an active lifestyle can help to prevent obesity. In this regard, artificial intelligence (AI) can play an important role in estimating health conditions and detecting obesity and its types. This study aims to see obesity levels in adults by implementing… More >

  • Open Access

    ARTICLE

    Optimal Quad Channel Long Short-Term Memory Based Fake News Classification on English Corpus

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Khaled Tarmissi3, Ayman Yafoz4, Amal S. Mehanna5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3303-3319, 2023, DOI:10.32604/csse.2023.034823 - 03 April 2023

    Abstract The term ‘corpus’ refers to a huge volume of structured datasets containing machine-readable texts. Such texts are generated in a natural communicative setting. The explosion of social media permitted individuals to spread data with minimal examination and filters freely. Due to this, the old problem of fake news has resurfaced. It has become an important concern due to its negative impact on the community. To manage the spread of fake news, automatic recognition approaches have been investigated earlier using Artificial Intelligence (AI) and Machine Learning (ML) techniques. To perform the medicinal text classification tasks, the… More >

  • Open Access

    ARTICLE

    Anomaly Detection and Classification in Streaming PMU Data in Smart Grids

    A. L. Amutha1, R. Annie Uthra1,*, J. Preetha Roselyn2, R. Golda Brunet3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3387-3401, 2023, DOI:10.32604/csse.2023.029904 - 03 April 2023

    Abstract The invention of Phasor Measurement Units (PMUs) produce synchronized phasor measurements with high resolution real time monitoring and control of power system in smart grids that make possible. PMUs are used in transmitting data to Phasor Data Concentrators (PDC) placed in control centers for monitoring purpose. A primary concern of system operators in control centers is maintaining safe and efficient operation of the power grid. This can be achieved by continuous monitoring of the PMU data that contains both normal and abnormal data. The normal data indicates the normal behavior of the grid whereas the… More >

  • Open Access

    ARTICLE

    COVID-19 Classification from X-Ray Images: An Approach to Implement Federated Learning on Decentralized Dataset

    Ali Akbar Siddique1, S. M. Umar Talha1, M. Aamir1, Abeer D. Algarni2, Naglaa F. Soliman2,*, Walid El-Shafai3,4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3883-3901, 2023, DOI:10.32604/cmc.2023.037413 - 31 March 2023

    Abstract The COVID-19 pandemic has devastated our daily lives, leaving horrific repercussions in its aftermath. Due to its rapid spread, it was quite difficult for medical personnel to diagnose it in such a big quantity. Patients who test positive for Covid-19 are diagnosed via a nasal PCR test. In comparison, polymerase chain reaction (PCR) findings take a few hours to a few days. The PCR test is expensive, although the government may bear expenses in certain places. Furthermore, subsets of the population resist invasive testing like swabs. Therefore, chest X-rays or Computerized Vomography (CT) scans are… More >

  • Open Access

    ARTICLE

    Improving Speech Enhancement Framework via Deep Learning

    Sung-Jung Hsiao1, Wen-Tsai Sung2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3817-3832, 2023, DOI:10.32604/cmc.2023.037380 - 31 March 2023

    Abstract Speech plays an extremely important role in social activities. Many individuals suffer from a “speech barrier,” which limits their communication with others. In this study, an improved speech recognition method is proposed that addresses the needs of speech-impaired and deaf individuals. A basic improved connectionist temporal classification convolutional neural network (CTC-CNN) architecture acoustic model was constructed by combining a speech database with a deep neural network. Acoustic sensors were used to convert the collected voice signals into text or corresponding voice signals to improve communication. The method can be extended to modern artificial intelligence techniques, More >

  • Open Access

    ARTICLE

    Automated Colonic Polyp Detection and Classification Enabled Northern Goshawk Optimization with Deep Learning

    Mohammed Jasim Mohammed Jasim1, Bzar Khidir Hussan2, Subhi R. M. Zeebaree3,*, Zainab Salih Ageed4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3677-3693, 2023, DOI:10.32604/cmc.2023.037363 - 31 March 2023

    Abstract The major mortality factor relevant to the intestinal tract is the growth of tumorous cells (polyps) in various parts. More specifically, colonic polyps have a high rate and are recognized as a precursor of colon cancer growth. Endoscopy is the conventional technique for detecting colon polyps, and considerable research has proved that automated diagnosis of image regions that might have polyps within the colon might be used to help experts for decreasing the polyp miss rate. The automated diagnosis of polyps in a computer-aided diagnosis (CAD) method is implemented using statistical analysis. Nowadays, Deep Learning,… More >

Displaying 241-250 on page 25 of 477. Per Page