Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (250)
  • Open Access

    ARTICLE

    Implementation of Strangely Behaving Intelligent Agents to Determine Human Intervention During Reinforcement Learning

    Christopher C. Rosser, Wilbur L. Walters, Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 261-277, 2022, DOI:10.32604/jai.2022.039703

    Abstract Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments. However, simulations of different learning environments in previous research show that after millions of timesteps of successful training, an intrinsically motivated agent may learn to act in ways unintended by the designer. This potential for unintended actions of autonomous exploring agents poses threats to the environment and humans if operated in the real world. We investigated this topic by using Unity’s Machine Learning Agent Toolkit (ML-Agents) implementation of the Proximal Policy Optimization (PPO) algorithm with the Intrinsic Curiosity Module (ICM) to train autonomous exploring agents in three… More >

  • Open Access

    ARTICLE

    Machine Learning Prediction Models of Optimal Time for Aortic Valve Replacement in Asymptomatic Patients

    Salah Alzghoul1,*, Othman Smadi1, Ali Al Bataineh2, Mamon Hatmal3, Ahmad Alamm4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 455-470, 2023, DOI:10.32604/iasc.2023.038338

    Abstract Currently, the decision of aortic valve replacement surgery time for asymptomatic patients with moderate-to-severe aortic stenosis (AS) is made by healthcare professionals based on the patient’s clinical biometric records. A delay in surgical aortic valve replacement (SAVR) can potentially affect patients’ quality of life. By using ML algorithms, this study aims to predict the optimal SAVR timing and determine the enhancement in moderate-to-severe AS patient survival following surgery. This study represents a novel approach that has the potential to improve decision-making and, ultimately, improve patient outcomes. We analyze data from 176 patients with moderate-to-severe aortic stenosis who had undergone or… More >

  • Open Access

    ARTICLE

    A Distributed Power Trading Scheme Based on Blockchain and Artificial Intelligence in Smart Grids

    Yue Yu1, Junhua Wu1,*, Guangshun Li1, Wangang Wang2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 583-598, 2023, DOI:10.32604/iasc.2023.037875

    Abstract As an emerging hot technology, smart grids (SGs) are being employed in many fields, such as smart homes and smart cities. Moreover, the application of artificial intelligence (AI) in SGs has promoted the development of the power industry. However, as users’ demands for electricity increase, traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities. This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation, electrical security, and other aspects.… More >

  • Open Access

    ARTICLE

    Deep Learning Based Energy Consumption Prediction on Internet of Things Environment

    S. Balaji*, S. Karthik

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 727-743, 2023, DOI:10.32604/iasc.2023.037409

    Abstract The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption; this is because EC is intimately tied to other forms of energy, such as oil and natural gas. For the purpose of determining and bettering overall energy consumption, there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things (IoT). Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable, and it has proven to be an effective tool for… More >

  • Open Access

    ARTICLE

    Breast Cancer Diagnosis Using Artificial Intelligence Approaches: A Systematic Literature Review

    Alia Alshehri, Duaa AlSaeed*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 939-970, 2023, DOI:10.32604/iasc.2023.037096

    Abstract One of the most prevalent cancers in women is breast cancer. Early and accurate detection can decrease the mortality rate associated with breast cancer. Governments and health organizations emphasize the significance of early breast cancer screening since it is associated to a greater variety of available treatments and a higher chance of survival. Patients have the best chance of obtaining effective treatment when they are diagnosed early. The detection and diagnosis of breast cancer have involved using various image types and imaging modalities. Breast “infrared thermal” imaging is one of the imaging modalities., a screening instrument used to measure the… More >

  • Open Access

    ARTICLE

    Energy Efficient Hyperparameter Tuned Deep Neural Network to Improve Accuracy of Near-Threshold Processor

    K. Chanthirasekaran, Raghu Gundaala*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 471-489, 2023, DOI:10.32604/iasc.2023.036130

    Abstract When it comes to decreasing margins and increasing energy efficiency in near-threshold and sub-threshold processors, timing error resilience may be viewed as a potentially lucrative alternative to examine. On the other hand, the currently employed approaches have certain restrictions, including high levels of design complexity, severe time constraints on error consolidation and propagation, and uncontaminated architectural registers (ARs). The design of near-threshold circuits, often known as NT circuits, is becoming the approach of choice for the construction of energy-efficient digital circuits. As a result of the exponentially decreased driving current, there was a reduction in performance, which was one of… More >

  • Open Access

    ARTICLE

    Acknowledge of Emotions for Improving Student-Robot Interaction

    Hasan Han1, Oguzcan Karadeniz1, Tugba Dalyan2,*, Elena Battini Sonmez2, Baykal Sarioglu1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1209-1224, 2023, DOI:10.32604/iasc.2023.030674

    Abstract Robot companions will soon be part of our everyday life and students in the engineering faculty must be trained to design, build, and interact with them. The two affordable robots presented in this paper have been designed and constructed by two undergraduate students; one artificial agent is based on the Nvidia Jetson Nano development board and the other one on a remote computer system. Moreover, the robots have been refined with an empathetic system, to make them more user-friendly. Since automatic facial expression recognition skills is a necessary pre-processing step for acknowledging emotions, this paper tested different variations of Convolutional… More >

  • Open Access

    ARTICLE

    Coati Optimization-Based Energy Efficient Routing Protocol for Unmanned Aerial Vehicle Communication

    Hanan Abdullah Mengash1, Hamed Alqahtani2, Mohammed Maray3, Mohamed K. Nour4, Radwa Marzouk1, Mohammed Abdullah Al-Hagery5, Heba Mohsen6, Mesfer Al Duhayyim7,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4805-4820, 2023, DOI:10.32604/cmc.2023.037810

    Abstract With the flexible deployment and high mobility of Unmanned Aerial Vehicles (UAVs) in an open environment, they have generated considerable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications. The difficulty stems from features other than mobile ad-hoc network (MANET), namely aerial mobility in three-dimensional space and often changing topology. In the UAV network, a single node serves as a forwarding, transmitting, and receiving node at the same time. Typically, the communication path is multi-hop, and routing significantly affects the network’s performance. A lot of effort should be invested in performance analysis for selecting… More >

  • Open Access

    ARTICLE

    Managing Health Treatment by Optimizing Complex Lab-Developed Test Configurations: A Health Informatics Perspective

    Uzma Afzal1, Tariq Mahmood2, Ali Mustafa Qamar3,*, Ayaz H. Khan4,5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6251-6267, 2023, DOI:10.32604/cmc.2023.037653

    Abstract A complex Laboratory Developed Test (LDT) is a clinical test developed within a single laboratory. It is typically configured from many feature constraints from clinical repositories, which are part of the existing Laboratory Information Management System (LIMS). Although these clinical repositories are automated, support for managing patient information with test results of an LDT is also integrated within the existing LIMS. Still, the support to configure LDTs design needs to be made available even in standard LIMS packages. The manual configuration of LDTs is a complex process and can generate configuration inconsistencies because many constraints between features can remain unsatisfied.… More >

  • Open Access

    ARTICLE

    Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings

    Ibrahim Aliyu1, Tai-Won Um2, Sang-Joon Lee3, Chang Gyoon Lim4,*, Jinsul Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5947-5964, 2023, DOI:10.32604/cmc.2023.037202

    Abstract In the quest to minimize energy waste, the energy performance of buildings (EPB) has been a focus because building appliances, such as heating, ventilation, and air conditioning, consume the highest energy. Therefore, effective design and planning for estimating heating load (HL) and cooling load (CL) for energy saving have become paramount. In this vein, efforts have been made to predict the HL and CL using a univariate approach. However, this approach necessitates two models for learning HL and CL, requiring more computational time. Moreover, the one-dimensional (1D) convolutional neural network (CNN) has gained popularity due to its nominal computational complexity,… More >

Displaying 1-10 on page 1 of 250. Per Page  

Share Link