Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936 - 20 June 2024

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275 - 26 December 2023

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access

    ARTICLE

    Arrhythmia Detection and Classification by Using Modified Recurrent Neural Network

    Ajina Mohamed Ameer*, M. Victor Jose

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1349-1361, 2022, DOI:10.32604/iasc.2022.023924 - 24 March 2022

    Abstract This paper presents a novel approach for arrhythmia detection and classification using modified recurrent neural network. In medicine and analytics, arrhythmia detections is a hot topic, specifically when it comes to cardiac identification. In the research methodology, there are 4 main steps. Acquisition and pre-processing of data, electrocardiogram (ECG) feature extraction utilizing QRS (Quick Response Systems) peak, and ECG signal classification using a Modified Recurrent Neural Network (Modified RNN) for arrhythmia diagnosis. The Massachusetts Institute of Technology-Beth Israel Hospital. (MIT-BIH) Arrhythmia database was used, as well as the image accuracy. Medium filter is used in… More >

  • Open Access

    ARTICLE

    An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals

    Nimmala Mangathayaru1,*, Padmaja Rani2, Vinjamuri Janaki3, Kalyanapu Srinivas4, B. Mathura Bai1, G. Sai Mohan1, B. Lalith Bharadwaj1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2425-2443, 2021, DOI:10.32604/cmc.2021.016534 - 21 July 2021

    Abstract Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine. Detecting arrhythmia from ECG signals is considered a standard approach and hence, automating this process would aid the diagnosis by providing fast, cost-efficient, and accurate solutions at scale. This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography (ECG) signals causing arrhythmia. In this era of applied intelligence, automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions. In this research, our contributions are two-fold. Firstly, the Dual-Tree Complex Wavelet… More >

  • Open Access

    RETRACTION

    Retraction Notice to: Automatic Arrhythmia Detection Based on Convolutional Neural Networks

    Zhong Liu, Xin’an Wang, Kuntao Lu, David Su

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 1079-1079, 2020, DOI:10.32604/cmc.2020.04882

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Extended cardiac ambulatory rhythm monitoring in adults with congenital heart disease: Arrhythmia detection and impact of extended monitoring

    Karen E. Schultz1, George K. Lui1,2, Doff B. McElhinney1, Jin Long3, Vidhya Balasubramanian3, Charlotte Sakarovitch3, Susan M. Fernandes1,2, Anne M. Dubin1, Ian S. Rogers1,2, Anitra W. Romfh1,2, Kara S. Motonaga1, Mohan N. Viswanathan2, Scott R. Ceresnak1

    Congenital Heart Disease, Vol.14, No.3, pp. 410-418, 2019, DOI:10.1111/chd.12736

    Abstract Background: Arrhythmias are a leading cause of death in adults with congenital heart disease (ACHD). While 24‐48‐hour monitors are often used to assess arrhythmia burden, extended continuous ambulatory rhythm monitors (ECAM) can record 2 weeks of data. The utility of this device and the arrhythmia burden identified beyond 48‐hour monitoring have not been evaluated in the ACHD population. Additionally, the impact of ECAM has not been studied to determine management recommendations.
    Objective: To address the preliminary question, we hypothesized that clinically sig‐ nificant arrhythmias would be detected on ECAM beyond 48 hours and this would lead to… More >

  • Open Access

    RETRACTION

    RETRACTED: Automatic Arrhythmia Detection Based on Convolutional Neural Networks

    Zhong Liu1,2, Xinan Wang1,*, Kuntao Lu1, David Su3

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 497-509, 2019, DOI:10.32604/cmc.2019.04882

    Abstract ECG signal is of great importance in the clinical diagnosis of various heart diseases. The abnormal origin or conduction of excitation is the electrophysiological mechanism leading to arrhythmia, but the type and frequency of arrhythmia is an important indicator reflecting the stability of cardiac electrical activity. In clinical practice, arrhythmic signals can be classified according to the origin of excitation, the frequency of excitation, or the transmission of excitation. Traditional heart disease diagnosis depends on doctors, and it is influenced by doctors' professional skills and the department's specialty. ECG signal has the characteristics of weak More >

Displaying 1-10 on page 1 of 8. Per Page