Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Asymptotic Approximations of Apostol-Tangent Polynomials in Terms of Hyperbolic Functions

    Cristina B. Corcino1,2, Wilson D. Castañeda Jr.3, Roberto B. Corcino1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 133-151, 2022, DOI:10.32604/cmes.2022.019965 - 02 June 2022

    Abstract The tangent polynomials Tn (z) are generalization of tangent numbers or the Euler zigzag numbers Tn. In particular, Tn (0) = Tn. These polynomials are closely related to Bernoulli, Euler and Genocchi polynomials. One of the extensions and analogues of special polynomials that attract the attention of several mathematicians is the Apostoltype polynomials. One of these Apostol-type polynomials is the Apostol-tangent polynomials Tn(z, λ). When λ = 1, Tn (z, 1) = Tn(z). The use of hyperbolic functions to derive asymptotic approximations of polynomials together with saddle point method was applied to the Bernoulli and Euler polynomials by Lopez… More >

Displaying 1-10 on page 1 of 1. Per Page