Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563 - 08 July 2024

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    DL-Powered Anomaly Identification System for Enhanced IoT Data Security

    Manjur Kolhar*, Sultan Mesfer Aldossary

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2857-2879, 2023, DOI:10.32604/cmc.2023.042726 - 26 December 2023

    Abstract In many commercial and public sectors, the Internet of Things (IoT) is deeply embedded. Cyber security threats aimed at compromising the security, reliability, or accessibility of data are a serious concern for the IoT. Due to the collection of data from several IoT devices, the IoT presents unique challenges for detecting anomalous behavior. It is the responsibility of an Intrusion Detection System (IDS) to ensure the security of a network by reporting any suspicious activity. By identifying failed and successful attacks, IDS provides a more comprehensive security capability. A reliable and efficient anomaly detection system… More >

  • Open Access

    ARTICLE

    Integrated Generative Adversarial Network and XGBoost for Anomaly Processing of Massive Data Flow in Dispatch Automation Systems

    Wenlu Ji1, Yingqi Liao1,*, Liudong Zhang2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2825-2848, 2023, DOI:10.32604/iasc.2023.039618 - 11 September 2023

    Abstract Existing power anomaly detection is mainly based on a pattern matching algorithm. However, this method requires a lot of manual work, is time-consuming, and cannot detect unknown anomalies. Moreover, a large amount of labeled anomaly data is required in machine learning-based anomaly detection. Therefore, this paper proposes the application of a generative adversarial network (GAN) to massive data stream anomaly identification, diagnosis, and prediction in power dispatching automation systems. Firstly, to address the problem of the small amount of anomaly data, a GAN is used to obtain reliable labeled datasets for fault diagnosis model training… More >

Displaying 1-10 on page 1 of 3. Per Page