Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (143)
  • Open Access

    REVIEW

    Mitochondrial Stress, Melatonin, and Neurodegenerative Diseases: New Nanopharmacological Approaches

    Virna Margarita Martín Giménez1, SebastiáN GarcíA MenéNdez2,3, Luiz Gustavo A. Chuffa4, Vinicius Augusto SimãO4, Russel J. Reiter5, Ramaswamy Sharma6, Walter Balduini7, Carla Gentile8, Walter Manucha2,3,*

    BIOCELL, Vol.49, No.12, pp. 2245-2282, 2025, DOI:10.32604/biocell.2025.071830 - 24 December 2025

    Abstract Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by progressive neuronal loss, which is closely linked to mitochondrial dysfunction. These pathologies involve a complex interplay of genetics, protein misfolding, and cellular stress, culminating in impaired energy metabolism, an increase in reactive oxygen species (ROS), and defective mitochondrial quality control. The accumulation of damaged mitochondria and dysregulation of pathways such as the Integrated Stress Response (ISR) are central to the pathogenesis of these conditions. This review explores the critical relationship between mitochondrial stress… More >

  • Open Access

    ARTICLE

    Germination and Early Growth Responses of Bread Wheat (Triticum aestivum L.) to Cadmium Stress

    Nada Zaari Jabri1, Mohamed Ait-El-Mokhtar1,*, Fadoua Mekkaoui1, Najwa Rabah1, Ilham Amghar1, Ghizlane Diria2, Abdelaziz Hmyene1

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3687-3701, 2025, DOI:10.32604/phyton.2025.071634 - 01 December 2025

    Abstract Cadmium (Cd) contamination is a major environmental stressor that adversely affects crop germination and early development. This study assessed the impact of increasing Cd concentrations (0.125 to 1 g/L) on seed germination and early seedling growth in three bread wheat (Triticum aestivum L.) cultivars: Achtar, Lina, and Snina. The results revealed a clear dose-dependent inhibitory effect of Cd. Germination percentage (GP) significantly declined with increasing Cd levels, while mean germination time was progressively delayed, particularly at higher concentrations. Vigor index (VI) also showed significant reductions, reflecting compromised seedling establishment. Morphological traits, especially shoot and root lengths,… More >

  • Open Access

    REVIEW

    Metabolic Adaptations of Cyanobacteria to Environmental Stress: Mechanisms and Biotechnological Potentials

    Riya Tripathi, Varsha K. Singh, Palak Rana, Sapana Jha, Ashish P. Singh, Payel Rana, Rajeshwar P. Sinha*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3371-3399, 2025, DOI:10.32604/phyton.2025.070712 - 01 December 2025

    Abstract Cyanobacteria are photosynthetic prokaryotes. They exhibit remarkable metabolic adaptability, enabling them to withstand oxidative stress, high salinity, temperature extremes, and UV radiation (UVR). Their adaptive strategies involve complex regulatory networks that affect gene expression, enzyme activity, and metabolite fluxes to maintain cellular homeostasis. Key stress response systems include the production of antioxidants such as peroxidases (POD), catalase (CAT), and superoxide dismutase (SOD), which detoxify reactive oxygen species (ROS). To withstand environmental stresses, cyanobacteria maintain osmotic balance by accumulating compatible solutes, such as glycine betaine, sucrose, and trehalose. They also adapt to temperature and light fluctuations… More >

  • Open Access

    REVIEW

    Melatonin Biosynthesis, Growth Regulation, and Adaptability to Environmental Stress in Plants

    Xiaomei He1, Xiaoting Wan1, Muhammad Arif 2, Ziyang Hu1, Haiyu Wang1, Muhammad Aamir Manzoor3,*, Cheng Song1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 2985-3002, 2025, DOI:10.32604/phyton.2025.070697 - 29 October 2025

    Abstract Melatonin is a multifunctional molecule found in all organisms that has been shown to play a crucial role in plant growth, development, and stress response. Plant melatonin is typically synthesized in organelles termed chloroplasts, and the mechanisms of its synthesis and metabolic pathways have been extensively studied. Melatonin serves a significant regulatory function in plant growth and development, influencing the morphological and physiological characteristics of plants by modulating biological processes. While studies on plant melatonin receptors are in their early stages compared to studies in animal receptors, the binding mechanism with melatonin is now recognized… More >

  • Open Access

    PROCEEDINGS

    Research on the Stress Field Measurement Method Based on Terahertz Time-Domain Spectroscopy

    Kai Kang1,*, Zhiyong Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012678

    Abstract Terahertz time-domain spectroscopy (THz-TDS) can be utilized to probe internal parameters of dielectric materials, such as the refractive index. Based on the stress-optic law, stress-induced variations in the refractive index enable the calculation of applied stress through measured changes in the refractive index. This paper introduces a THz-TDS-based methodology for stress field measurement. First, a THz-TDS stress field scanning and imaging system was developed, incorporating an amplitude-field imaging method that maps stress distributions using variations in the amplitude of THz pulses. Second, two analytical algorithms were established: a planar stress analysis algorithm based on THz… More >

  • Open Access

    PROCEEDINGS

    Physical Field Prediction of Fiber-Reinforced Composite Based on Improved Convolutional Neural Network and Generative Representative Volume Element Model

    Qiuze Yao, Zhensheng Wu, Xiang Peng*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011507

    Abstract Fiber-reinforced composites are widely applied in various fields due to their high strength and modulus, and analyzing their physical field is crucial for improving material performance and structural design. However, traditional analysis methods, such as finite element analysis (FEM) and numerical computation are still limited by computational efficiency and accuracy when applied to microstructures. To address this challenge, convolutional neural network (CNN) approaches are being developed to quickly and accurately predict the physical fields in fiber-reinforced composites. Under static loading, the U-Net framework is developed with an adaptive two-stage training approach to address the generalization… More >

  • Open Access

    ARTICLE

    Soil Temperature and Moisture as Key Determinants of SPAD Values in Greenhouse-Grown Cucumber in Qatar

    Farhat Abbas1, Fahim Ullah Khan1,2,*, Salem Al-Naemi3, Awni Al-Otoom1, Ahmed T. Moustafa4, Khaled Shami1

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2911-2925, 2025, DOI:10.32604/phyton.2025.064239 - 30 September 2025

    Abstract This study aimed to explore the relationship between Soil-Plant Analysis Development (SPAD) values and key environmental factors in cucumber (Cucumis sativus L.) cultivation in a greenhouse. SPAD values, indicative of chlorophyll content, reflect plant health and productivity. The analysis revealed strong positive correlations between SPAD values and both indoor light intensity (ILI, r = 0.59, p < 0.001) and outdoor light intensity (OLI, r = 0.62, p < 0.001), suggesting that higher light intensities were associated with enhanced SPAD values. In contrast, significant negative correlations were found between SPAD values and soil temperature at 15–30 cm depth… More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction Using Finite Element Hot-Spot and Notch Approaches: Strain-Based FAT Curves Proposal for Ti6Al4V Joints

    Pasqualino Corigliano*, Giulia Palomba

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1935-1955, 2025, DOI:10.32604/cmes.2025.067094 - 31 August 2025

    Abstract Experimental tests are essential for evaluating S-N curves and assessing the fatigue life of welded joints. However, in the case of complex geometries, experimental tests often cannot provide the necessary stress-strain data for specific materials and welded joints. Therefore, finite element (FE) analyses are frequently utilized to assess fatigue behavior in complex geometries and address the discontinuities induced by welding processes. In this study, the fatigue properties of titanium welded joints, produced using an innovative laser source and welded without the use of filler materials, were analyzed through numerical methods. Two different FE methods were… More >

  • Open Access

    ARTICLE

    Experimental Study on Additional Stress Induced by Grouting with Polyurethane-Modified Cementitious Materials under Confined Conditions

    Qizhi Chen1,2, Wensheng Cheng1,2, Baoping Zou1,2,*, Bowen Kong1,2, Yansheng Deng1,2, Xu Long3,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 463-475, 2025, DOI:10.32604/jpm.2025.064257 - 14 July 2025

    Abstract The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels, often leading to structural damage. Grouting technology using cement-based materials is widely applied to address issues such as seepage, leakage, and alignment correction in shield tunnels. This study investigates the additional stress induced by grouting in silty soil layers, using cement-based grouts with different water-to-cement ratios and polyurethane-modified cement-based materials. Results show that additional stress decreases with depth and is more influenced by horizontal distance from the grouting point. In staged grouting, the first injection phase contributes about More >

  • Open Access

    ARTICLE

    Influence of Welding Residual Stress on the Structural Behaviour of Large-Span Steel Tube Arch Rib

    Chunling Yan1,2, Renzhang Yan1,2,*, Zhenxiu Zhan1, Xiyang Chen1, Yu Han3

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1037-1056, 2025, DOI:10.32604/sdhm.2025.058780 - 30 June 2025

    Abstract The steel tube arch rib in a large-span concrete-filled steel tube arch bridge has a large span and diameter, which also leads to a larger weld seam scale. Large-scale welding seams will inevitably cause more obvious welding residual stress (WRS). For the purpose of studying the influence of WRS from large-scale welding seam on the mechanical properties of steel tube arch rib during arch rib splicing, test research and numerical simulation analysis on the WRS in arch rib splicing based on the Guangxi Pingnan Third Bridge, which is the world’s largest span concrete-filled steel… More >

Displaying 1-10 on page 1 of 143. Per Page