Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    TC-Net: A Modest & Lightweight Emotion Recognition System Using Temporal Convolution Network

    Muhammad Ishaq1, Mustaqeem Khan1,2, Soonil Kwon1,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3355-3369, 2023, DOI:10.32604/csse.2023.037373 - 03 April 2023

    Abstract Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines. Speech Emotion Recognition (SER) is one of the critical sources for human evaluation, which is applicable in many real-world applications such as healthcare, call centers, robotics, safety, and virtual reality. This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state. The authors designed a Temporal Convolutional Network (TCN) core block to recognize long-term dependencies in speech signals and then feed these temporal More >

  • Open Access

    ARTICLE

    Game Outlier Behavior Detection System Based on Dynamic Time Warp Algorithm

    Shinjin Kang1, Soo Kyun Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 219-237, 2022, DOI:10.32604/cmes.2022.018413 - 24 January 2022

    Abstract This paper proposes a methodology for using multi-modal data in gameplay to detect outlier behavior. The proposed methodology collects, synchronizes, and quantifies time-series data from webcams, mouses, and keyboards. Facial expressions are varied on a one-dimensional pleasure axis, and changes in expression in the mouth and eye areas are detected separately. Furthermore, the keyboard and mouse input frequencies are tracked to determine the interaction intensity of users. Then, we apply a dynamic time warp algorithm to detect outlier behavior. The detected outlier behavior graph patterns were the play patterns that the game designer did not More >

  • Open Access

    ARTICLE

    1D-CNN: Speech Emotion Recognition System Using a Stacked Network with Dilated CNN Features

    Mustaqeem, Soonil Kwon*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 4039-4059, 2021, DOI:10.32604/cmc.2021.015070 - 01 March 2021

    Abstract Emotion recognition from speech data is an active and emerging area of research that plays an important role in numerous applications, such as robotics, virtual reality, behavior assessments, and emergency call centers. Recently, researchers have developed many techniques in this field in order to ensure an improvement in the accuracy by utilizing several deep learning approaches, but the recognition rate is still not convincing. Our main aim is to develop a new technique that increases the recognition rate with reasonable cost computations. In this paper, we suggested a new technique, which is a one-dimensional dilated… More >

Displaying 1-10 on page 1 of 3. Per Page