Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Ensemble Learning Based on GBDT and CNN for Adoptability Prediction

    Yunfan Ye1, Fang Liu1, *, Shan Zhao2, Wanting Hu3, Zhiyao Liang4

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1361-1372, 2020, DOI:10.32604/cmc.2020.011632 - 20 August 2020

    Abstract By efficiently and accurately predicting the adoptability of pets, shelters and rescuers can be positively guided on improving attraction of pet profiles, reducing animal suffering and euthanization. Previous prediction methods usually only used a single type of content for training. However, many pets contain not only textual content, but also images. To make full use of textual and visual information, this paper proposed a novel method to process pets that contain multimodal information. We employed several CNN (Convolutional Neural Network) based models and other methods to extract features from images and texts to obtain the More >

Displaying 1-10 on page 1 of 1. Per Page