Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    PROCEEDINGS

    Numerical Study of Fracture Mechanisms in Metal Powder Bed Fusion Additive Manufacturing Processes

    Lu Liu1, Bo Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012741

    Abstract Powder-Bed Fusion (PBF) is a prominent metal additive manufacturing technology known for its adaptability and commercial viability. However, it is often hindered by defects such as voids, un-melted particles, microcracking, and columnar grains, which are generally more pronounced than those found in traditional manufacturing methods. Microcracking, in particular, poses a significant challenge, limiting the use of PBF materials in safety-critical applications across various industries. This study presents an advanced computational framework that effectively addresses the complex interactions of thermal, fluid dynamics, structural mechanics, crystallization, and fracture phenomena at meso and macroscopic levels. This framework has More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    Exploring Heat Treatment Effects on an Additively Manufactured Al6xxx Alloy

    Zhiheng Hu1,*, Hang Li Seet1, Sharon Mui Ling Nai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012118

    Abstract Heat treatment is a common way for enhancing the mechanical properties of the aluminum alloys. For the alloys developed for laser powder bed fusion, changes in chemical composition, together with the non-equilibrium microstructures resulting from the ultrafast cooling rate during the process, potentially alter the effectiveness of heat treatment. This study investigates the effect of the heat treatments on a Al6xxx alloy fabricated by LPBF. The response to the same heat treatment varies depending on the initial microstructure, and similarly, different heat treatments yield distinct outcomes when applied to the same original microstructures. While there… More >

  • Open Access

    PROCEEDINGS

    Inverse Design of Multifunctional Shape-Morphing Structures Based on Functionally Graded Composites

    Hirak Kansara1, Mingchao Liu2,*, Yinfeng He3, Wei Tan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011328

    Abstract Shape-morphing structures exhibit the remarkable ability to transition between different configurations, offering vast potential across numerous applications. A common example involves the transformation from a flat two-dimensional (2D) state to a desired three-dimensional (3D) form. One prevalent technique for fabricating such structures entails strategically cutting thin sheet materials (known as kirigami), which, upon the application of external mechanical forces, morph into the intended 3D shape. A method leveraging the non-linear beam equation has been proposed for inverse design, determining the optimal 2D cutting patterns necessary to achieve a symmetrical 3D shape. Central to this strategy… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Microstructure Manipulation of an Additively Manufactured CoCrNi Medium Entropy Alloy for Superior Mechanical Properties and Tunable Mechanical Anisotropy

    Chenze Li1, Manish Jain1,2, Qian Liu1, Zhuohan Cao1, Michael Ferry3, Jamie J. Kruzic1, Bernd Gludovatz1, Xiaopeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011290

    Abstract Laser powder bed fusion (LPBF) additive manufacturing (AM) technology has become a versatile tool for producing new microstructures in metal components, offering novel mechanical properties for different applications. In this work, enhanced ductility (~55% elongation) and tunable mechanical anisotropy (ratio of ductility along vertical to horizontal orientation from ~0.2 to ~1) were achieved for a CoCrNi medium entropy alloy (MEA) by multi-scale synergistic microstructure manipulation (i.e., melt pool boundary, grain morphology and crystallographic texture) through adjusting key LPBF processing parameters (e.g., laser power and scan speed). By increasing the volumetric energy density (VED) from 68.3… More >

  • Open Access

    PROCEEDINGS

    Adaptive Quality Enhancement in Robotic Laser-Directed Energy Deposition Through Melt Pool Simulation

    Jungyeon Kim1, Lequn Chen1, Seung Ki Moon1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012511

    Abstract Robotic Laser-Directed Energy Deposition (L-DED) offers significant advantages in terms of workplace size and kinematic flexibility for part fabrication. However, its potential is hindered by challenges such as toolpath precision and speed inconsistency compared to traditional CNC machines. These limitations critically affect melt pool dynamics, temperature consistency, and ultimately, the geometric integrity of fabricated parts, areas that are still not thoroughly understood or quantified.
    This preliminary research aims to investigate the impact of these inaccuracies on melt pool morphology and part quality, utilizing in-situ collected speed/position data with a digital twin model, notably the Eagar-Tsai… More >

  • Open Access

    PROCEEDINGS

    4D Printing of Polylactic Acid Hinges: A Study on Shape Memory Factors for Generative Design in a Digital Library Framework for Soft Robotics

    Jiazhao Huang1, Xiaoying Qi1, Chu Long Tham1, Hang Li Seet1, Sharon Mui Ling Nai1, David William Rosen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012040

    Abstract The emergence of 4D printing introduces stimuli-responsive, shape-changing capabilities through additive manufacturing (AM) and smart materials, has advanced the field of soft robotics. However, there are currently lack of methods or tools that capable of aiding in the generative design of 4D AM structures. The current generative design procedure for 4D AM structures often lacks transferability among various structures due to limited understanding of shape memory material behaviors for soft robotics. To develop such a digital library, investigation of fundamental elements, such as material properties of shape memory materials, geometry parameters of design primitives, and… More >

  • Open Access

    PROCEEDINGS

    Microstructure Refinement for Superior Ductility of Al–Si Alloy by Electron Beam Melting Additive Manufacturing

    Huakang Bian1,3,*, Yufan Zhao2,3, Akihiko Chiba3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012491

    Abstract Refining the Si phase in Al‒Si alloy has been a research interest for decades. Previous studies suggested many Al- and Si-enriched nano-segments (approximately 100 nm) can coexist in a melted Al–Si liquid solution when they were reheated to a temperature between 1080 and 1290 °C. These nano-segments could be retained to become crystal nuclei and grew into fine grains under a very fast cooling rate. Thus, this provides a novel approach of refining the microstructure of Al–Si alloy using electron beam melting (EBM) technology because the temperature exceeds 1500 °C in the melting pool with… More >

  • Open Access

    PROCEEDINGS

    Quantitative Characterization of Microstructural Inhomogeneity: Integrating Ultrasonic Scattering Mechanisms from Multi-Features in Additive Manufactured Microstructures

    Junfei Tai1, Zheng Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011059

    Abstract The non-destructive characterization of material microstructures presents a significant and enduring challenge in the field. The sensitivity of elastic waves to the nuances of microstructural parameters positions ultrasound as a viable and potent method for non-destructive evaluation. However, enhancing the interaction between elastic waves and the internal microstructure typically involves utilizing wavelengths larger than the microstructural features, thereby rendering ultrasonic scattering as the predominant mechanism. This interaction is complicated by the fact that fundamental microstructural characteristics, such as grain size, morphology, and texture intensity, exert considerable and intertwined effects on ultrasonic scattering, complicating their separate… More >

  • Open Access

    PROCEEDINGS

    Integrated Workflow of Design for Additive Manufacturing: From Topology Optimization to Distortion Compensation

    Chen Wang1,*, Pan Wang1, Jiazhao Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011846

    Abstract Industry 4.0 promises to bring significant changes to general additive manufacturing (AM) systems, ushered by the incorporation of digital twin development to capture high-volume data in an integrated and automated way [1]. During this transformation, it is required to develop advanced methods to solve main problems in the large-scale industrial use of AM technology. One of the challenges is how to eliminate or mitigate the structural distortion due to thermal effect during AM processes [2-4]. To reduce the level of distortion, a general hands-on approach is to compensate the geometry based on physical measurements of… More >

Displaying 1-10 on page 1 of 46. Per Page