Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly

    Yuna Han1, Hangbae Chang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 221-237, 2023, DOI:10.32604/cmc.2023.039463 - 08 June 2023

    Abstract Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous… More >

  • Open Access

    ARTICLE

    Adaptive Learning Video Streaming with QoE in Multi-Home Heterogeneous Networks

    S. Vijayashaarathi1,*, S. NithyaKalyani2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2881-2897, 2023, DOI:10.32604/csse.2023.036864 - 03 April 2023

    Abstract In recent years, real-time video streaming has grown in popularity. The growing popularity of the Internet of Things (IoT) and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience (QoE) and performance objectives. Most researchers focused on Forward Error Correction (FEC) techniques when attempting to strike a balance between QoE and performance. However, as network capacity increases, the performance degrades, impacting the live visual experience. Recently, Deep Learning (DL) algorithms have been successfully integrated with FEC to stream videos across multiple… More >

  • Open Access

    ARTICLE

    Frequency Domain Adaptive Learning Algorithm for Thoracic Electrical Bioimpedance Enhancement

    Md Zia Ur Rahman1,*, S. Rooban1, P. Rohini2, M. V. S. Ramprasad3, Pradeep Vinaik Kodavanti3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5713-5726, 2022, DOI:10.32604/cmc.2022.027672 - 21 April 2022

    Abstract The Thoracic Electrical Bioimpedance (TEB) helps to determine the stroke volume during cardiac arrest. While measuring cardiac signal it is contaminated with artifacts. The commonly encountered artifacts are Baseline wander (BW) and Muscle artifact (MA), these are physiological and non-stationary. As the nature of these artifacts is random, adaptive filtering is needed than conventional fixed coefficient filtering techniques. To address this, a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario. The proposed block least mean square (BLMS) algorithm is mathematically normalized with reference to data and… More >

  • Open Access

    ARTICLE

    An Efficient Reference Free Adaptive Learning Process for Speech Enhancement Applications

    Girika Jyoshna1,*, Md. Zia Ur Rahman1, L. Koteswararao2

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3067-3080, 2022, DOI:10.32604/cmc.2022.020160 - 27 September 2021

    Abstract In issues like hearing impairment, speech therapy and hearing aids play a major role in reducing the impairment. Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy. During the transmission of speech signals, several noise components contaminate the actual speech components. This paper addresses a new adaptive speech enhancement (ASE) method based on a modified version of singular spectrum analysis (MSSA). The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component. The MSSA adopts three key… More >

Displaying 1-10 on page 1 of 4. Per Page