Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Adaptive Density-Based Spatial Clustering of Applications with Noise (ADBSCAN) for Clusters of Different Densities

    Ahmed Fahim1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3695-3712, 2023, DOI:10.32604/cmc.2023.036820 - 31 March 2023

    Abstract Finding clusters based on density represents a significant class of clustering algorithms. These methods can discover clusters of various shapes and sizes. The most studied algorithm in this class is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects. It requires two input parameters: epsilon (fixed neighborhood radius) and MinPts (the lowest number of objects in epsilon). However, it can’t handle clusters of various densities since it uses a global value for epsilon. This article proposes an adaptation of the… More >

Displaying 1-10 on page 1 of 1. Per Page