Anas AbuKaraki1, Tawfi Alrawashdeh1, Sumaya Abusaleh1, Malek Zakarya Alksasbeh1,*, Bilal Alqudah1, Khalid Alemerien2, Hamzah Alshamaseen3
CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1055-1073, 2024, DOI:10.32604/cmc.2024.051420
- 18 July 2024
Abstract This paper presents a novel multiclass system designed to detect pleural effusion and pulmonary edema on chest X-ray images, addressing the critical need for early detection in healthcare. A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14, PadChest, and CheXpert databases, with 10,287, 6022, and 12,000 samples representing Pleural Effusion, Pulmonary Edema, and Normal cases, respectively. Consequently, the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) method to boost the local contrast of the X-ray samples, then resizing the images to 380 × 380 dimensions, followed by using the data… More >