Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    MII: A Novel Text Classification Model Combining Deep Active Learning with BERT

    Anman Zhang1, Bohan Li1, 2, 3, *, Wenhuan Wang1, Shuo Wan1, Weitong Chen4

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1499-1514, 2020, DOI:10.32604/cmc.2020.09962 - 30 April 2020

    Abstract Active learning has been widely utilized to reduce the labeling cost of supervised learning. By selecting specific instances to train the model, the performance of the model was improved within limited steps. However, rare work paid attention to the effectiveness of active learning on it. In this paper, we proposed a deep active learning model with bidirectional encoder representations from transformers (BERT) for text classification. BERT takes advantage of the self-attention mechanism to integrate contextual information, which is beneficial to accelerate the convergence of training. As for the process of active learning, we design an More >

Displaying 1-10 on page 1 of 1. Per Page