Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10

    Trong Thua Huynh*, Hoang Thanh Nguyen, Du Thang Phu

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2281-2298, 2024, DOI:10.32604/cmc.2024.057954 - 18 November 2024

    Abstract In recent years, early detection and warning of fires have posed a significant challenge to environmental protection and human safety. Deep learning models such as Faster R-CNN (Faster Region based Convolutional Neural Network), YOLO (You Only Look Once), and their variants have demonstrated superiority in quickly detecting objects from images and videos, creating new opportunities to enhance automatic and efficient fire detection. The YOLO model, especially newer versions like YOLOv10, stands out for its fast processing capability, making it suitable for low-latency applications. However, when applied to real-world datasets, the accuracy of fire prediction is… More >

  • Open Access

    ARTICLE

    A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection

    Chandraumakantham Om Kumar1,*, Sudhakaran Gajendran2, Suguna Marappan1, Mohammed Zakariah3, Abdulaziz S. Almazyad4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 471-501, 2024, DOI:10.32604/cmc.2024.054966 - 15 October 2024

    Abstract The security of the wireless sensor network-Internet of Things (WSN-IoT) network is more challenging due to its randomness and self-organized nature. Intrusion detection is one of the key methodologies utilized to ensure the security of the network. Conventional intrusion detection mechanisms have issues such as higher misclassification rates, increased model complexity, insignificant feature extraction, increased training time, increased run time complexity, computation overhead, failure to identify new attacks, increased energy consumption, and a variety of other factors that limit the performance of the intrusion system model. In this research a security framework for WSN-IoT, through… More >

  • Open Access

    ARTICLE

    Elevating Localization Accuracy in Wireless Sensor Networks: A Refined DV-Hop Approach

    Muhammad Aamer Ejaz1,*, Kamalrulnizam Abu Bakar1, Ismail Fauzi Bin Isnin1, Babangida Isyaku1,2,*, Taiseer Abdalla Elfadil Eisa3, Abdelzahir Abdelmaboud4, Asma Abbas Hassan Elnour3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1511-1528, 2024, DOI:10.32604/cmc.2024.054938 - 15 October 2024

    Abstract Localization is crucial in wireless sensor networks for various applications, such as tracking objects in outdoor environments where GPS (Global Positioning System) or prior installed infrastructure is unavailable. However, traditional techniques involve many anchor nodes, increasing costs and reducing accuracy. Existing solutions do not address the selection of appropriate anchor nodes and selecting localized nodes as assistant anchor nodes for the localization process, which is a critical element in the localization process. Furthermore, an inaccurate average hop distance significantly affects localization accuracy. We propose an improved DV-Hop algorithm based on anchor sets (AS-IDV-Hop) to improve… More >

  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

  • Open Access

    ARTICLE

    Improving Diversity with Multi-Loss Adversarial Training in Personalized News Recommendation

    Ruijin Xue1,2, Shuang Feng1,2,*, Qi Wang1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3107-3122, 2024, DOI:10.32604/cmc.2024.052600 - 15 August 2024

    Abstract Users’ interests are often diverse and multi-grained, with their underlying intents even more so. Effectively capturing users’ interests and uncovering the relationships between diverse interests are key to news recommendation. Meanwhile, diversity is an important metric for evaluating news recommendation algorithms, as users tend to reject excessive homogeneous information in their recommendation lists. However, recommendation models themselves lack diversity awareness, making it challenging to achieve a good balance between the accuracy and diversity of news recommendations. In this paper, we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity. Unlike… More >

  • Open Access

    ARTICLE

    Classification and Comprehension of Software Requirements Using Ensemble Learning

    Jalil Abbas1,*, Arshad Ahmad2, Syed Muqsit Shaheed3, Rubia Fatima4, Sajid Shah5, Mohammad Elaffendi5, Gauhar Ali5

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2839-2855, 2024, DOI:10.32604/cmc.2024.052218 - 15 August 2024

    Abstract The software development process mostly depends on accurately identifying both essential and optional features. Initially, user needs are typically expressed in free-form language, requiring significant time and human resources to translate these into clear functional and non-functional requirements. To address this challenge, various machine learning (ML) methods have been explored to automate the understanding of these requirements, aiming to reduce time and human effort. However, existing techniques often struggle with complex instructions and large-scale projects. In our study, we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier (FNRC). By combining the… More >

  • Open Access

    ARTICLE

    A High-Accuracy Curve Boundary Recognition Method Based on the Lattice Boltzmann Method and Immersed Moving Boundary Method

    Jie-Di Weng1, Yong-Zheng Jiang1,*, Long-Chao Chen1, Xu Zhang1, Guan-Yong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2533-2557, 2024, DOI:10.32604/cmes.2024.051232 - 08 July 2024

    Abstract Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved boundaries is vital in aircraft design, ocean, and construction engineering. However, current methods such as Lattice Boltzmann (LBM) and the immersion boundary method based on solid ratio (IMB) have limitations in identifying custom curved boundaries. Meanwhile, IBM based on velocity correction (IBM-VC) suffers from inaccuracies and numerical instability. Therefore, this study introduces a high-accuracy curve boundary recognition method (IMB-CB), which identifies boundary nodes by moving the search box, and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,… More > Graphic Abstract

    A High-Accuracy Curve Boundary Recognition Method Based on the Lattice Boltzmann Method and Immersed Moving Boundary Method

  • Open Access

    ARTICLE

    Comprehensive Analysis of Gender Classification Accuracy across Varied Geographic Regions through the Application of Deep Learning Algorithms to Speech Signals

    Abhishek Singhal*, Devendra Kumar Sharma

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 609-625, 2024, DOI:10.32604/csse.2023.046730 - 20 May 2024

    Abstract This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions, employing a deep learning classification algorithm for speech signal analysis. In this study, speech samples are categorized for both training and testing purposes based on their geographical origin. Category 1 comprises speech samples from speakers outside of India, whereas Category 2 comprises live-recorded speech samples from Indian speakers. Testing speech samples are likewise classified into four distinct sets, taking into consideration both geographical origin and the language spoken by the speakers. Significantly, the results indicate a noticeable difference… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656 - 15 May 2024

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

  • Open Access

    ARTICLE

    Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections

    Dmitry Gura1,2, Bo Dong3,*, Duaa Mehiar4, Nidal Al Said5

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1995-2014, 2024, DOI:10.32604/cmc.2024.048238 - 15 May 2024

    Abstract The motivation for this study is that the quality of deep fakes is constantly improving, which leads to the need to develop new methods for their detection. The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection, which is then used as input to the CNN. The customized Convolutional Neural Network method is the date augmented-based CNN model to generate ‘fake data’ or ‘fake images’. This study was carried out using Python and its libraries. We used 242 films from the dataset gathered by the Deep Fake… More >

Displaying 1-10 on page 1 of 124. Per Page