Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (551)
  • Open Access

    COMMENTARY

    A commentary on the interplay of biomaterials and cell adhesion: new insights in bone tissue regeneration

    A. NOEL GRAVINA1,2, NOELIA D´ELÍA1,2, LUCIANO A. BENEDINI2,3,*, PAULA MESSINA1,2

    BIOCELL, Vol.48, No.11, pp. 1517-1520, 2024, DOI:10.32604/biocell.2024.055513 - 07 November 2024

    Abstract This article navigates the relationship between biomaterials and osteogenic cell adhesion, highlighting the importance of mimicking the physiological response for bone tissue regeneration. Within this spirit is an initial description of the interaction between osteoblasts and osteoprogenitor cells with the extracellular matrix, explaining the leading role of integrins and cadherins in cell adhesion, and the intracellular signaling pathways elicited. Additionally, there is a focus on the strategies of advanced biomaterials that foster osteogenesis by replicating the native environment, taking advantage of these known specific signaling pathways. The final remarks lay on the need for careful More >

  • Open Access

    PROCEEDINGS

    Characterization and Numerical Simulation of Delamination Propagation Behavior in Carbon Fiber Reinforced Composite Laminates

    Yu Gong1,*, Jianyu Zhang1, Libin Zhao2, Ning Hu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011451

    Abstract Advanced carbon fiber reinforced composite materials are increasingly being used in aerospace and other fields. Composite laminate structure is one of the commonly used configurations, but due to weak interlayer performance, interlayer delamination is prone to occur [1]. The occurrence and growth of delamination will seriously affect the overall integrity and safety of composite structures, making it a focus of attention in the design of laminated structures. Accurately characterizing the delamination mechanical properties of composite laminates and simulating delamination propagation behavior is the basis for damage tolerance design and analysis of composite structures with delamination… More >

  • Open Access

    PROCEEDINGS

    Recycling of Spent CuCrZr Powder by Laser Powder Bed Fusion: Microstructure Evolution and Properties

    Lizheng Zhang1,2, Jimin Chen1,2,*, Yong Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011127

    Abstract In laser powder bed fusion (LPBF), the unmelted powder recovered from the powder bed is degraded due to particle-laser interaction during continuous processing. The sensitivity of LPBF performance and molding quality to powder properties, waste powder is usually discarded after several molding cycles, which increases the cost of raw materials. At the same time, the low laser absorption rate and high thermal conductivity of copper and copper alloys inhibit the complete melting of copper powder prepared by LPBF. Therefore, it is challenging to fabricate copper alloy components with full high density and high conductivity through… More >

  • Open Access

    ARTICLE

    Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model

    Chentong Zhao1, Jiming Zhou1,2,*, Xujiang Chao1,3, Su Wang1, Lehua Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2453-2469, 2024, DOI:10.32604/cmes.2024.052723 - 31 October 2024

    Abstract The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix. This paper explores the mechanism of cooling rate, process temperature, and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology, namely molecular dynamics. Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites. Conversely, processing temperature significantly affects the degree of graphene aggregation, with higher temperatures leading to the formation of larger-sized graphene clusters. In More >

  • Open Access

    REVIEW

    Sodium-Glucose Cotransporter 2 Inhibitors in Adult and Pediatric Congenital Heart Disease: Review of Emerging Data and Future Directions

    William H. Marshall V1,2,*, Lydia K. Wright2

    Congenital Heart Disease, Vol.19, No.4, pp. 419-433, 2024, DOI:10.32604/chd.2024.056608 - 31 October 2024

    Abstract Heart failure (HF) is common in patients with congenital heart disease (CHD) and there are limited medical therapies. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a proven medical therapy in patients with acquired HF, though data are limited in patients with CHD. The aim of this review is to summarize the current evidence for use of SGLT2i in patients with CHD and identify future directions for study. In available publications, SGLT2i in patients with CHD seem to be well tolerated, with similar side effect profile to patients with acquired HF. Improvement in functional capacity and natriuretic More >

  • Open Access

    REVIEW

    Right Axillary Thoracotomy Should Be the Standard of Care for Repair of Non-Complex Congenital Heart Defects in Infants and Children

    Sameh M. Said1,2,*, Yasin Essa1

    Congenital Heart Disease, Vol.19, No.4, pp. 407-417, 2024, DOI:10.32604/chd.2024.055636 - 31 October 2024

    Abstract Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world. A wide range of the most common congenital heart defects in infants and children can be repaired successfully through a variety of non-sternotomy incisions. This has been shown to be associated with superior cosmetic results, shorter hospital stays, and rapid return to full activity compared to sternotomy. These approaches have been around for decades, but they have not been widely adopted for a variety of reasons. Right axillary thoracotomy is one of these approaches that we believe should More >

  • Open Access

    ARTICLE

    A Graph with Adaptive Adjacency Matrix for Relation Extraction

    Run Yang1,2,3, Yanping Chen1,2,3,*, Jiaxin Yan1,2,3, Yongbin Qin1,2,3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4129-4147, 2024, DOI:10.32604/cmc.2024.051675 - 12 September 2024

    Abstract The relation is a semantic expression relevant to two named entities in a sentence. Since a sentence usually contains several named entities, it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities. In related work, graph convolutional neural networks are widely adopted to learn semantic dependencies, where a dependency tree initializes the adjacency matrix. However, this approach has two main issues. First, parsing a sentence heavily relies on external toolkits, which can be error-prone. Second, the dependency tree only encodes the syntactical structure of a sentence,… More >

  • Open Access

    ARTICLE

    Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems

    R. Mahaveerakannan1, Thanarajan Tamilvizhi2,*, Sonia Jenifer Rayen3, Osamah Ibrahim Khalaf4, Habib Hamam5,6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3945-3966, 2024, DOI:10.32604/cmc.2024.051611 - 12 September 2024

    Abstract The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content. In light of the data-centric aspect of contemporary communication, the information-centric network (ICN) paradigm offers hope for a solution by emphasizing content retrieval by name instead of location. If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things (IoT) devices, then effective caching solutions will be required to maximize network throughput and minimize the use of resources. Hence, an ICN-based Cooperative Caching (ICN-CoC) technique has been used to select… More >

  • Open Access

    ARTICLE

    Alkali and Plasma-Treated Guadua angustifolia Bamboo Fibers: A Study on Reinforcement Potential for Polymeric Matrices

    Patricia Luna1,*, Juan Lizarazo-Marriaga1, Alvaro Mariño2

    Journal of Renewable Materials, Vol.12, No.8, pp. 1399-1416, 2024, DOI:10.32604/jrm.2024.052669 - 06 September 2024

    Abstract This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials. Chemical (alkali) and physical (dry etching plasma) treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices. The influence of these treatments on the fibers’ performance, chemical composition, and surface morphology were analyzed. Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40% and 20%, respectively, whereas plasma treatments maintain the fibers’ mechanical performance. FTIR spectroscopy revealed significant alterations in chemical composition due More > Graphic Abstract

    Alkali and Plasma-Treated <i>Guadua angustifolia</i> Bamboo Fibers: A Study on Reinforcement Potential for Polymeric Matrices

  • Open Access

    ARTICLE

    Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq

    Ahmed Mustaffa Saleem, Abdullah A. Badr, Bahjat Hassan Alyas, Omar Rafae Alomar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1231-1244, 2024, DOI:10.32604/fhmt.2024.053770 - 30 August 2024

    Abstract This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq. The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software. The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day. The wall types are selected: the first type consists of cement mortar, brick, and gypsum, the second type consists of cement mortar, brick, gypsum, and plaster and the third type… More >

Displaying 1-10 on page 1 of 551. Per Page