Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (781)
  • Open Access

    ARTICLE

    The Relationship among Chinese Teachers’ Organizational Support, Career Adaptability and Job Satisfaction: The Mediating Effect of Decent Work

    Huaruo Chen1,2, Gefan Wang1, Hancai Qiu1, Hui Ma1, Zhentao Peng1, Ruihan Liu3, Feng Xu4,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073911 - 28 January 2026

    Abstract Background: As an important indicator of subjective well-being (SWB), decent work is a key guarantee for the sustainable development of teachers and their psychological health and work quality. Faced with the rapid development of artificial intelligence and the global labor market, vocational college teachers are facing challenges such as workload pressure and limited career development, which may harm their well-being. This study aims to localize the measurement method of decent work in Chinese vocational education based on the theory of the Psychology of Working Theory, and explore the relationship mechanism between organizational support, career adaptability, decent… More >

  • Open Access

    ARTICLE

    Adaptability Analysis of Dual Clearing Systems in Spot Electricity Markets Based on Fuzzy Evaluation Metrics: An Inner Mongolia Case Study

    Kai Xie1, Shaoqing Yuan2, Dayun Zou1, Jinran Wang1,*, Genjun Chen1, Ciwei Gao3, Yinghao Cao1

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070733 - 27 January 2026

    Abstract The construction of spot electricity markets plays a pivotal role in power system reforms, where market clearing systems profoundly influence market efficiency and security. Current clearing systems predominantly adopt a single-system architecture, with research focusing primarily on accelerating solution algorithms through techniques such as high-efficiency parallel solvers and staggered decomposition of mixed-integer programming models. Notably absent are systematic studies evaluating the adaptability of primary-backup clearing systems in contingency scenarios—a critical gap given redundant systems’ expanding applications in operational environments. This paper proposes a comprehensive evaluation framework for analyzing dual-system adaptability, demonstrated through an in-depth case… More >

  • Open Access

    ARTICLE

    Serum Extracellular Vesicle-Associated GULP1 Is a Key Indicator of Hepatocellular Carcinoma

    Hyung Seok Kim1,#, Ju A Son2,#, Minji Kang3,4,#, Soon Sun Kim3, Geum Ok Baek3, Moon Gyeong Yoon3, Se Ha Jang3,4, Dokyung Jung5, Ji Eun Han3, Jae Youn Cheong3,*, Jung Woo Eun3,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.070392 - 19 January 2026

    Abstract Objectives: Early detection of hepatocellular carcinoma (HCC) is a significant challenge due to the limited sensitivity of alpha-fetoprotein (AFP). This study aimed to assess serum-derived extracellular vesicle-encapsulated GULP PTB domain-containing engulfment adaptor 1 (EV-GULP1) as a novel, noninvasive biomarker for HCC detection and prognosis, leveraging the potential of tumor-specific molecules carried by small extracellular vesicles (EVs). Methods: The study utilized both internal and external cohorts of HCC patients and controls. Small EVs were isolated from serum samples, then characterized and validated to confirm their identity. The expression levels of EV-GULP1 were quantified using quantitative reverse transcription… More >

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    ARTICLE

    CAWASeg: Class Activation Graph Driven Adaptive Weight Adjustment for Semantic Segmentation

    Hailong Wang1, Minglei Duan2, Lu Yao3, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072942 - 12 January 2026

    Abstract In image analysis, high-precision semantic segmentation predominantly relies on supervised learning. Despite significant advancements driven by deep learning techniques, challenges such as class imbalance and dynamic performance evaluation persist. Traditional weighting methods, often based on pre-statistical class counting, tend to overemphasize certain classes while neglecting others, particularly rare sample categories. Approaches like focal loss and other rare-sample segmentation techniques introduce multiple hyperparameters that require manual tuning, leading to increased experimental costs due to their instability. This paper proposes a novel CAWASeg framework to address these limitations. Our approach leverages Grad-CAM technology to generate class activation… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Personnel Detection in Substations via Federated Learning with Dynamic Noise Adaptation

    Yuewei Tian1, Yang Su2, Yujia Wang1, Lisa Guo1, Xuyang Wu3,*, Lei Cao4, Fang Ren3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072081 - 12 January 2026

    Abstract This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service, and federated coordination layers. It accommodates both multimodal data classification and object detection tasks, enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while ensuring privacy protection. This effectively mitigates the single-point… More >

  • Open Access

    ARTICLE

    Speech Emotion Recognition Based on the Adaptive Acoustic Enhancement and Refined Attention Mechanism

    Jun Li1, Chunyan Liang1,*, Zhiguo Liu1, Fengpei Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071011 - 12 January 2026

    Abstract To enhance speech emotion recognition capability, this study constructs a speech emotion recognition model integrating the adaptive acoustic mixup (AAM) and improved coordinate and shuffle attention (ICASA) methods. The AAM method optimizes data augmentation by combining a sample selection strategy and dynamic interpolation coefficients, thus enabling information fusion of speech data with different emotions at the acoustic level. The ICASA method enhances feature extraction capability through dynamic fusion of the improved coordinate attention (ICA) and shuffle attention (SA) techniques. The ICA technique reduces computational overhead by employing depth-separable convolution and an h-swish activation function and More >

  • Open Access

    ARTICLE

    CASBA: Capability-Adaptive Shadow Backdoor Attack against Federated Learning

    Hongwei Wu*, Guojian Li, Hanyun Zhang, Zi Ye, Chao Ma

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071008 - 12 January 2026

    Abstract Federated Learning (FL) protects data privacy through a distributed training mechanism, yet its decentralized nature also introduces new security vulnerabilities. Backdoor attacks inject malicious triggers into the global model through compromised updates, posing significant threats to model integrity and becoming a key focus in FL security. Existing backdoor attack methods typically embed triggers directly into original images and consider only data heterogeneity, resulting in limited stealth and adaptability. To address the heterogeneity of malicious client devices, this paper proposes a novel backdoor attack method named Capability-Adaptive Shadow Backdoor Attack (CASBA). By incorporating measurements of clients’… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

Displaying 1-10 on page 1 of 781. Per Page