Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (970)
  • Open Access

    ARTICLE

    Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems

    Ting Chen1, Shuna Jiang2, Xin Fan3,*, Jianchuan Xia2, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2195-2217, 2024, DOI:10.32604/cmc.2024.056960 - 18 November 2024

    Abstract In blockchain-based unmanned aerial vehicle (UAV) communication systems, the length of a block affects the performance of the blockchain. The transmission performance of blocks in the form of finite character segments is also affected by the block length. Therefore, it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems, especially in wireless environments involving UAVs. This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission. In our scheme, using a friendly jamming UAV… More >

  • Open Access

    ARTICLE

    Improved Double Deep Q Network Algorithm Based on Average Q-Value Estimation and Reward Redistribution for Robot Path Planning

    Yameng Yin1, Lieping Zhang2,*, Xiaoxu Shi1, Yilin Wang3, Jiansheng Peng4, Jianchu Zou4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2769-2790, 2024, DOI:10.32604/cmc.2024.056791 - 18 November 2024

    Abstract By integrating deep neural networks with reinforcement learning, the Double Deep Q Network (DDQN) algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots. However, the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data. Targeting those problems, an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed. First, to enhance the precision of the target Q-value, the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value… More >

  • Open Access

    ARTICLE

    A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8

    Zongdong Du1,2, Xuefeng Feng3, Feng Li3, Qinglong Xian3, Zhenhong Jia1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2607-2627, 2024, DOI:10.32604/cmc.2024.056616 - 18 November 2024

    Abstract The importance of unmanned aerial vehicle (UAV) obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance, thereby protecting people and property. We propose UAD-YOLOv8, a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance. The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2 (DCNv2) to optimize the cross stage partial bottleneck with 2 convolutions and fusion (C2f) module. Additionally, it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable… More >

  • Open Access

    ARTICLE

    MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network

    Hina Bhanbhro1,*, Yew Kwang Hooi1, Mohammad Nordin Bin Zakaria1, Worapan Kusakunniran2, Zaira Hassan Amur1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2243-2259, 2024, DOI:10.32604/cmc.2024.052138 - 18 November 2024

    Abstract Object detection has made a significant leap forward in recent years. However, the detection of small objects continues to be a great difficulty for various reasons, such as they have a very small size and they are susceptible to missed detection due to background noise. Additionally, small object information is affected due to the downsampling operations. Deep learning-based detection methods have been utilized to address the challenge posed by small objects. In this work, we propose a novel method, the Multi-Convolutional Block Attention Network (MCBAN), to increase the detection accuracy of minute objects aiming to… More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanical Performance with Robust and Efficient Machine Learning-Assisted Path Planning for Additive Manufacturing of Continuous Fiber Composites

    Xinmeng Zha1, Huilin Ren1,*, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011371

    Abstract Additive manufacturing of continuous fiber composites is an emerging field that enables the tunable mechanical performance of composite structure by flexibly controlling the spatial layout of continuous fibers. Transverse isotropic strengthening is advantageous property of continuous fiber, which is favorable to align with the principal stress orientation. However, the accuracy and efficiency of traditional methods for calculating principal stress field are unguaranteed due to the inherent complexity and variability of geometries, material properties, and operational conditions in additive manufacturing. Therefore, a machine learning-assisted path planning method is proposed to robustly and efficiently generate the continuous… More >

  • Open Access

    PROCEEDINGS

    Effect of Channel Aspect Ratio on Flow Boiling in Mini-Channels

    Wei Lu1,3, Yujie Chen2,*, Bo Yu2, Dongliang Sun2, Wei Zhang2, Yanru Yang1,3, Xiaodong Wang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012265

    Abstract Flow boiling offers superior heat transfer performance compared to single-phase flow, therefore holding significant potential for application in thermal management. In mini-channel applications, due to their narrow dimensions, the size characteristics of the channel have a particularly notable impact on bubble dynamics and flow boiling heat transfer performance. This study employs the VOSET method to explore the impact of different aspect ratios (1:3, 1:2, 1:1, 2:1, 3:1) on the heat transfer performance of mini-channels. By maintaining a consistent equivalent diameter across the channels, the study aims to unveil the mechanism by which aspect ratios affect… More >

  • Open Access

    PROCEEDINGS

    Concurrent Design of Composite Structure and Continuous Toolpath for Additive Manufacturing of Fiber-Reinforced Polymer Composites

    Huilin Ren1,2, David W. Rosen2, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010920

    Abstract The advancement of continuous fiber-reinforced polymer additive manufacturing (CFRP-AM) enables the fabrication of structures with complex geometries and superior properties. However, current design methodologies consider toolpath design and structure optimization as separate stages, with toolpath design typically serving as a post-processing step after structure optimization. This sequential methodology limits the full exploitation of fiber reinforced polymer composites (FRPC) capabilities, particularly in achieving optimal structural integrity and manufacturability. In this paper, a manufacturing-oriented method is proposed for designing continuous FRPC structures, in which the structural layout and continuous fiber toolpaths are simultaneously optimized. The integrated design… More >

  • Open Access

    ARTICLE

    Influence of the Channel Design on the Heat Exchange Characteristics of Pulsating Flows in the Supply System of an Engine

    Leonid Plotnikov*, Danil Davydov, Dmitry Krasilnikov, Vladislav Shurupov

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1309-1322, 2024, DOI:10.32604/fhmt.2024.056680 - 30 October 2024

    Abstract Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world. The aim of the study was to evaluate the gas-dynamic, consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies. Valve channels with cross sections in the form of a circle, square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocating-engine model. The article presents data on changes in… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Driven FVM-ANN Model for Entropy Analysis of MHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

    Noura Alsedais1, Mohamed Ahmed Mansour2, Abdelraheem M. Aly3, Sara I. Abdelsalam4,5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1277-1307, 2024, DOI:10.32604/fhmt.2024.056087 - 30 October 2024

    Abstract The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques. Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt method, accurately predicts values, showing high correlation (R = 1), low mean squared error (MSE), and minimal error clustering. Parametric analysis reveals significant… More >

  • Open Access

    ARTICLE

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

    Ali M. H. Al-Obaidy*, Ekhlas M. Fayyadh, Amer M. Al-Dabagh

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1421-1442, 2024, DOI:10.32604/fhmt.2024.055063 - 30 October 2024

    Abstract High heat dissipation is required for miniaturization and increasing the power of electronic systems. Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need for moving parts. Many studies have focused on improving heat transfer efficiency during boiling by modifying the surface of the heating element. This paper presents an experimental investigation on improving pool boiling heat transfer using an open microchannel. The primary goal of this work is to investigate the impact of the channel geometry characteristics on boiling heat transfer. Initially, rectangular microchannels were prepared… More > Graphic Abstract

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

Displaying 1-10 on page 1 of 970. Per Page