Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,154)
  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    ARTICLE

    Combined Wind-Storage Frequency Modulation Control Strategy Based on Fuzzy Prediction and Dynamic Control

    Weiru Wang1, Yulong Cao1,*, Yanxu Wang1, Jiale You1, Guangnan Zhang1, Yu Xiao2

    Energy Engineering, Vol.121, No.12, pp. 3801-3823, 2024, DOI:10.32604/ee.2024.055398 - 22 November 2024

    Abstract To ensure frequency stability in power systems with high wind penetration, the doubly-fed induction generator (DFIG) is often used with the frequency fast response control (FFRC) to participate in frequency response. However, a certain output power suppression amount (OPSA) is generated during frequency support, resulting in the frequency modulation (FM) capability of DFIG not being fully utilised, and the system’s unbalanced power will be increased during speed recovery, resulting in a second frequency drop (SFD) in the system. Firstly, the frequency response characteristics of the power system with DFIG containing FFRC are analysed. Then, based… More >

  • Open Access

    ARTICLE

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

    Inna Bilous1, Dmytro Biriukov1, Dmytro Karpenko2, Tatiana Eutukhova2, Oleksandr Novoseltsev2,*, Volodymyr Voloshchuk1

    Energy Engineering, Vol.121, No.12, pp. 3617-3634, 2024, DOI:10.32604/ee.2024.051684 - 22 November 2024

    Abstract This article focuses on the challenges of modeling energy supply systems for buildings, encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings. Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material, such as for thermal upgrades, which consequently incurs additional economic costs. It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions, considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in… More > Graphic Abstract

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    Position-Aware and Subgraph Enhanced Dynamic Graph Contrastive Learning on Discrete-Time Dynamic Graph

    Jian Feng*, Tian Liu, Cailing Du

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2895-2909, 2024, DOI:10.32604/cmc.2024.056434 - 18 November 2024

    Abstract Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph representation learning to eliminate the dependence of labels. However, existing studies neglect positional information when learning discrete snapshots, resulting in insufficient network topology learning. At the same time, due to the lack of appropriate data augmentation methods, it is difficult to capture the evolving patterns of the network effectively. To address the above problems, a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs. Firstly, the global snapshot is built based on the historical snapshots… More >

  • Open Access

    ARTICLE

    YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments

    Chenghai Yu, Zhilong Lu*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3261-3280, 2024, DOI:10.32604/cmc.2024.056413 - 18 November 2024

    Abstract Railway turnouts often develop defects such as chipping, cracks, and wear during use. If not detected and addressed promptly, these defects can pose significant risks to train operation safety and passenger security. Despite advances in defect detection technologies, research specifically targeting railway turnout defects remains limited. To address this gap, we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments. To enhance detection accuracy, we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU (YOLO-VSI). The model employs a state-space model (SSM) to enhance the C2f module in the YOLOv8… More >

  • Open Access

    ARTICLE

    Dynamic Deep Learning for Enhanced Reliability in Wireless Sensor Networks: The DTLR-Net Approach

    Gajjala Savithri1,2, N. Raghavendra Sai1,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2547-2569, 2024, DOI:10.32604/cmc.2024.055827 - 18 November 2024

    Abstract In the world of wireless sensor networks (WSNs), optimizing performance and extending network lifetime are critical goals. In this paper, we propose a new model called DTLR-Net (Deep Temporal LSTM Regression Network) that employs long-short-term memory and is effective for long-term dependencies. Mobile sinks can move in arbitrary patterns, so the model employs long short-term memory (LSTM) networks to handle such movements. The parameters were initialized iteratively, and each node updated its position, mobility level, and other important metrics at each turn, with key measurements including active or inactive node ratio, energy consumption per cycle,… More >

  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    ARTICLE

    A Dynamic YOLO-Based Sequence-Matching Model for Efficient Coverless Image Steganography

    Jiajun Liu1, Lina Tan1,*, Zhili Zhou2, Weijin Jiang1, Yi Li1, Peng Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3221-3240, 2024, DOI:10.32604/cmc.2024.054542 - 18 November 2024

    Abstract Many existing coverless steganography methods establish a mapping relationship between cover images and hidden data. One issue with these methods is that as the steganographic capacity increases, the number of images stored in the database grows exponentially. This makes it challenging to build and manage a large image database. To improve the image library utilization and anti-attack capability of the steganography system, we propose an efficient coverless scheme based on dynamically matched substrings. We utilize You Only Look Once (YOLO) for selecting optimal objects and create a mapping dictionary between these objects and scrambling factors.… More >

Displaying 1-10 on page 1 of 2154. Per Page