Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (232)
  • Open Access

    REVIEW

    Hypersonic Flow over V-Shaped Leading Edges: A Review of Shock Interactions and Aerodynamic Loads

    Xinyue Dong1, Wei Zhao1, Jingying Wang1,2,*, Shiyue Zhang1, Yue Zhou3, Xinglian Yang1, Chunhian Lee1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076238 - 06 February 2026

    Abstract For hypersonic air-breathing vehicles, the V-shaped leading edges (VSLEs) of supersonic combustion ramjet (scramjet) inlets experience complex shock interactions and intense aerodynamic loads. This paper provides a comprehensive review of flow characteristics at the crotch of VSLEs, with particular focus on the transition of shock interaction types and the variation of wall heat flux under different freestream Mach numbers and geometric configurations. The mechanisms governing shock transition, unsteady oscillations, hysteresis, and three-dimensional effects in VSLE flows are first examined. Subsequently, thermal protection strategies aimed at mitigating extreme heating loads are reviewed, emphasizing their relevance to More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Deep Learning Architectures for AI-Assisted Breast Cancer Detection in Mammography Using the MammosighTR Dataset: A Nationwide Turkish Screening Study (2016–2022)

    Nuh Azginoglu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075834 - 29 January 2026

    Abstract Breast cancer screening programs rely heavily on mammography for early detection; however, diagnostic performance is strongly affected by inter-reader variability, breast density, and the limitations of conventional computer-aided detection systems. Recent advances in deep learning have enabled more robust and scalable solutions for large-scale screening, yet a systematic comparison of modern object detection architectures on nationally representative datasets remains limited. This study presents a comprehensive quantitative comparison of prominent deep learning–based object detection architectures for Artificial Intelligence-assisted mammography analysis using the MammosighTR dataset, developed within the Turkish National Breast Cancer Screening Program. The dataset comprises… More >

  • Open Access

    ARTICLE

    Effect of Sheath Modeling on Unbonded Post-Tensioned Concrete under Blast Loads

    Hyeon-Sik Choi1, Min Kyu Kim1, Jiuk Shin2, Thomas H.-K. Kang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074029 - 29 January 2026

    Abstract Unbonded post-tensioned (PT) concrete systems are widely used in safety-critical structures, yet modeling practices for prestress implementation and tendon-concrete interaction remain inconsistent. This study investigates the effects of sheath (duct) implementation and confinement assumptions through nonlinear finite element analysis. Four modeling cases were defined, consisting of an explicit sheath without tendon-concrete confinement (S) and three no-sheath variants with different confinement levels (X, N, A). One-way beams and two-way panels were analyzed, and panel blast responses were validated against experimental results. In both beams and panels, average initial stress levels were similar across models, through local More >

  • Open Access

    ARTICLE

    Production of Activated Biochar from Palm Kernel Shell for Methylene Blue Removal

    Sarina Sulaiman*, Muhammad Faris

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0105 - 23 January 2026

    Abstract In this study, Palm kernel shell (PKS) is utilized as a raw material to produce activated biochar as adsorbent for dye removal from wastewater, specifically methylene blue (MB) dye, by utilizing a simplified and cost-effective approach. Production of activated biochar was carried out using both a furnace and a domestic microwave oven without an inert atmosphere. Three samples of palm kernel shell (PKS) based activated biochar labeled as samples A, B and C were carbonized inside the furnace at 800°C for 1 h and then activated using the microwave-heating technique with varying heating times (0,… More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    REVIEW

    Research Progress in the Preparation of MOF/Cellulose Composites and Their Applications in Fluorescent Detection, Adsorption, and Degradation of Pollutants in Wastewater

    Zhimin Zhao, Liyun Feng, Dongsheng Song, Ming Zhang*

    Journal of Polymer Materials, Vol.42, No.4, pp. 929-957, 2025, DOI:10.32604/jpm.2025.074529 - 26 December 2025

    Abstract Global water pollution is becoming increasingly serious, and compound pollutants such as heavy metals and organic dyes pose multidimensional threats to ecology and human health. Metal-organic skeleton compounds (MOFs) have been proven to be highly efficient in capturing a variety of pollutants by virtue of their large specific surface area, adjustable pore channels, and abundant active sites. However, the easy agglomeration of powders, the difficulty of recycling, and the poor long-term stability have limited their practical applications. Cellulose, as the most abundant renewable polymer in nature, has the characteristics of a three-dimensional network, mechanical flexibility,… More >

  • Open Access

    ARTICLE

    Development of a Multi-Resolution SPH-PD Model for Simulating Ice Sheet Fragmentation under Underwater Explosion Loads

    Guang-Qi Liang1, Peng-Nan Sun1,2,*, A-Man Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3405-3431, 2025, DOI:10.32604/cmes.2025.072496 - 23 December 2025

    Abstract A multi-resolution smoothed particle hydrodynamics and peridynamics (SPH-PD) coupling model is proposed in this study for simulating the fracture characteristics of ice plates exposed to underwater blast loads. The SPH model employs a volume adaptive scheme (VAS) and a multi-resolution particle technique to accurately simulate explosive charge detonation and shock wave propagation. This approach addresses numerical challenges from charge expansion and significant size disparity between the charge and the fluid particles. The model captures the full underwater explosion process, covering both the shock wave phase and the bubble expansion stage, by applying appropriate equations of More >

  • Open Access

    ARTICLE

    Adsorption behavior and mechanism of heavy metal ions from acid mine drainage using two-dimensional MoS2 nanosheets

    K. Wanga,b,*, G. L. Lianc, Y. F. Qiaod

    Chalcogenide Letters, Vol.22, No.10, pp. 889-904, 2025, DOI:10.15251/CL.2025.2210.889

    Abstract The remediation of acid mine drainage (AMD), characterized by its high concentrations of toxic metal ions and low pH, presents a significant environmental challenge. In this study, exfoliated two-dimensional MoS nanosheets were prepared using a liquid-phase ultrasonication method and evaluated for their efficiency in removing Cd²⁺, Cu²⁺, and Pb²⁺ from aqueous solutions. Detailed structural and morphological analyses confirmed that the exfoliation process significantly enhanced surface area, pore volume, and exposure of reactive sulfur sites. Through isotherm and kinetic modeling analyses, the adsorption behavior was found to align with the Langmuir model and pseudo-second-order kinetic equation, which implies More >

  • Open Access

    ARTICLE

    Genome-Wide Scanning Analysis for MYB and MADS in Hydrangea macrophylla and the Inflorescence Type Related Candidate Genes Expression Analysis

    Qunlu Liu1,#, Fiza Liaquat1,2,#, Qiqi Tang1, Jun Yang3,4, Shuai Qiu5, Amber Malik2, Kang Ye3,4, Kai Gao5, Jun Qin3,4,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3539-3562, 2025, DOI:10.32604/phyton.2025.071989 - 01 December 2025

    Abstract Hydrangea macrophylla is a popular ornamental shrub with a lot of economic and aesthetic value. It is known for its different flower shapes (lacecap and mophead) and the way its flowers change color depending on the pH of the soil. Even though it is important for gardening, we still don’t know much about the molecular processes that lead to flower growth. The purpose of this study was to find and study SNP-related genes and transcription factors that are connected to the growth of H. macrophylla flowers. Genome-wide SNP analysis identified 11 SNPs associated with MYB transcription factors… More >

  • Open Access

    ARTICLE

    Fluid-Dynamic Loads on Turbine Blades in Downburst Wind Fields

    Yan Wang1,2,*, Fuqiang Zhang1, Long An1, Bo Wang1, Xueya Yang1, Jie Jin3,4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2651-2671, 2025, DOI:10.32604/fdmp.2025.070122 - 01 December 2025

    Abstract A downburst is a strong downdraft generated by intense thunderstorm clouds, producing radially divergent and highly destructive winds near the ground. Its characteristic scales are expressed through random variations in jet height, velocity, and diameter during an event. In this study, a reduced-scale parked wind turbine is exposed to downburst wind fields to investigate the resulting extreme wind loads. The analysis emphasizes both the flow structure of downbursts and the variations of surface wind pressure on turbine blades under different jet parameters. Results show that increasing jet velocity markedly enhances the maximum horizontal wind speed,… More > Graphic Abstract

    Fluid-Dynamic Loads on Turbine Blades in Downburst Wind Fields

Displaying 1-10 on page 1 of 232. Per Page