Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (281)
  • Open Access

    ARTICLE

    Right Axillary Thoracotomy vs. Median Sternotomy for Repair of Congenital Heart Defects in Infants and Children

    Sameh M. Said1,2,*, Kristin C. Greathouse3, Christina McCarthy3, Megan Khan3, Molly Hagen4, Nicholas Brown5, Sacha Kumar5, Mahmoud I. Salem6, James Flaherty7, Yasin Essa1

    Congenital Heart Disease, Vol.19, No.6, pp. 563-575, 2024, DOI:10.32604/chd.2025.061819 - 27 January 2025

    Abstract Objective: Vertical right thoracotomy (VRAT) has become an alternative to sternotomy for the repair of non-complex congenital heart defects in our infants and children. Summary Background Data: Limited data exists on the comparison of the two approaches. Methods: The present study consisted of two groups; Group I: (sternotomy; 33 patients) and Group II: (VRAT; 35 patients). We compared the two groups on operative data, hours of invasive lines, narcotics used, length of stay, and total variable cost of stay. Results: The most frequent procedures were atrial and ventricular septal defect closure (25 patients, 75.8% in Group I)… More >

  • Open Access

    PROCEEDINGS

    A Surrogate Model for Rapid Solution of Acoustic Wave Equation Based on the Boundary Element Method and Fourier Neural Operators

    Ruoyan Li1,2, Wenjing Ye1,*, Yijun Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012150

    Abstract A modern approach to control sound is through the development of sound-control materials/structures, which enable a wide range of applications such as noise reduction and non-contact particle manipulation. Designing these sound-controlling metamaterials requires accurate and efficient simulation methods for solving the unbounded acoustic wave equation with changing domain and frequencies. To facilitate the design optimization, surrogate models that are significantly more efficient than full-scale simulations are highly desirable. In this work, we present our recent work on the development of such surrogate models based on the concept of Fourier neural operators (FNO). FNO was originally… More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    ARTICLE

    Phytochemical and Pharmacological Study on the Dry Extract of Matricaria discoidea DC. herb and Its Amino Acids Preparations

    Oleh Koshovyi1,2,*, Janne Sepp1, Valdas Jakštas3, Vaidotas Žvikas3, Karina Tolmacheva4, Igor Kireyev4, Jyrki Heinämäki1, Ain Raal1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2909-2925, 2024, DOI:10.32604/phyton.2024.056536 - 30 November 2024

    Abstract Pineappleweed (Matricaria discoidea DC., Asteraceae) herb is an essential oil containing raw material with spasmolytic and anti-inflammatory activity. It is also rich in phenolics, which may be used in pharmaceutical practice. This study aimed to investigate the phenolic and amino acid composition and the hyporific and analgesic effects of the M. discoidea aqueous-ethanolic extract and its amino acid modifications. In addition, we developed a polyethylene oxide gel formulation with M. discoidea extracts for the 3D-printed oral solid dosage preparations. In M. discoidea extracts, 16 phenolic substances and 14 amino acids were established. The extract and its amino acid preparations More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    PROCEEDINGS

    A Type of Pentagon Plate-Shaped Metamaterial with Resonator Inside to Form a Regular Dodecahedron Metacage

    Anyu Xu1, Yonghang Sun2, Heow Pueh Lee1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010894

    Abstract A pentagon plate-shaped metamaterial with resonators inside is designed, and both sides are covered with PVC membranes. The components are designed with sloped exterior walls and can form a regular dodecahedron metacage. The effect of the single component is based on the vibration of the membranes, when the size of two membranes has the same size, the transmission loss appears to be significant around 900 Hz and have another peak around 1400 Hz. When use twelve components to form a regular dodecahedron metacage, with a diameter of less than half a meter, a measurement of… More >

  • Open Access

    PROCEEDINGS

    Damage Detection in CFRP Composite Joints using Acoustic Emission Analysis

    Wenhao Li1,*, Zongyang Liu1,2, Dingcheng Ji1,2, Yiding Liu3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011927

    Abstract This research advances the field by focusing on the damage assessment of adhesively bonded joints using AE, with limited prior studies in this specific area. Through the preparation of CFRP specimens and subsequent tensile loading tests, AE signals were captured and analyzed. The study employed wavelet decomposition for noise reduction and Short-Time Fourier Transform (STFT) for signal analysis, facilitating the identification of damage-related frequencies and amplitudes. Hierarchical clustering was applied to categorize AE signals into distinct damage behaviors, utilizing a divisive approach that avoids local minima and offers unique results at each iteration. The method's… More >

  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    PROCEEDINGS

    Analysis of Aeroacousticelastic Response for Cavity-Plate System Undergoing Supersonic Flow

    Yifei Li1, Ruisen Yang1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013359

    Abstract Cavity closed with a thin plate is a common structure in aircrafts, such as landing gear compartments and skin skeletons. The plate undergoing aerodynamic pressure on top is generally vibrating in the amplitude of thickness, which will induce an acoustic pressure in the cavity underneath and it will further affect the panel response. Considering both aerodynamic and acoustic pressure on the panel, there will be an interest to investigate the aero-acoustic-structure coupling mechanism and the aeroacoustoelastic response of the plate. Von Karman plate theory, piston theory and two-dimensional partial differential acoustic equation are employed for… More >

  • Open Access

    PROCEEDINGS

    Wave and Particle Manipulation by Acoustic and Electromagnetic Metamaterials

    Xiaobing Cai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012376

    Abstract Acoustic and Electromagnetic Metamaterials/Metasurface have demonstrated various fascinating functionalities in wave manipulation. However, further employment of the manipulated wave for controlling the movement of discrete particle matter is not so widely investigated. Particle matter, also known as granular matter, granular material etc, is the most common form of matter in nature, and so the effective control of granular matter is closely related to engineering and daily life. The use of sound waves and electromagnetic waves to manipulate the granular matter has been widely used in printing, environmental protection, pharmaceuticals and many other fields. However, in… More >

Displaying 1-10 on page 1 of 281. Per Page