Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (151)
  • Open Access

    ARTICLE

    A Model Training Method for DDoS Detection Using CTGAN under 5GC Traffic

    Yea-Sul Kim1, Ye-Eun Kim1, Hwankuk Kim2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1125-1147, 2023, DOI:10.32604/csse.2023.039550

    Abstract With the commercialization of 5th-generation mobile communications (5G) networks, a large-scale internet of things (IoT) environment is being built. Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service (DDoS) attacks across vast IoT devices. Recently, research on automated intrusion detection using machine learning (ML) for 5G environments has been actively conducted. However, 5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data. If this data is used to train an ML model, it will likely suffer from generalization errors due to… More >

  • Open Access

    ARTICLE

    Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands

    Shehab Khan Noor1, Arif Mawardi Ismail1, Mohd Najib Mohd Yasin1,*, Mohamed Nasrun Osman1, Thennarasan Sabapathy1, Shakhirul Mat Salleh2, Ping Jack Soh3, Ali Hanafiah Rambe4, Nurulazlina Ramli5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 537-551, 2023, DOI:10.32604/csse.2023.037381

    Abstract This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum (OAM) waves with Mode +2 at 3.5 GHz (3.4 to 3.6 GHz) of the sub-6 GHz fifth-generation (5G) New Radio (NR) band. The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate. In contrast to previous works involving the use of rigid substrates to generate OAM waves, this work explored the use of flexible substrates to generate OAM waves for the first time. Other than that, the proposed antenna was simulated, analyzed, fabricated, and… More >

  • Open Access

    ARTICLE

    An Intelligent Admission Control Scheme for Dynamic Slice Handover Policy in 5G Network Slicing

    Ratih Hikmah Puspita1, Jehad Ali1,*, Byeong-hee Roh2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4611-4631, 2023, DOI:10.32604/cmc.2023.033598

    Abstract 5G use cases, for example enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and an ultra-reliable low latency communication (URLLC), need a network architecture capable of sustaining stringent latency and bandwidth requirements; thus, it should be extremely flexible and dynamic. Slicing enables service providers to develop various network slice architectures. As users travel from one coverage region to another area, the call must be routed to a slice that meets the same or different expectations. This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks. Rules of thumb which indicates the accuracy… More >

  • Open Access

    ARTICLE

    Reconfigurable Logic Design of CORDIC Based FFT Architecture for 5G Communications

    C. Thiruvengadam1,*, M. Palanivelan2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2803-2818, 2023, DOI:10.32604/iasc.2023.030493

    Abstract There are numerous goals in next-generation cellular networks (5G), which is expected to be available soon. They want to increase data rates, reduce end-to-end latencies, and improve end-user service quality. Modern networks need to change because there has been a significant rise in the number of base stations required to meet these needs and put the operators’ low-cost constraints to the test. Because it can withstand interference from other wireless networks, and Adaptive Complex Multicarrier Modulation (ACMM) system is being looked at as a possible choice for the 5th Generation (5G) of wireless networks. Many arithmetic units need to be… More >

  • Open Access

    ARTICLE

    Design of Six Element MIMO Antenna with Enhanced Gain for 28/38 GHz mm-Wave 5G Wireless Application

    K. Jayanthi1,*, A. M. Kalpana2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1689-1705, 2023, DOI:10.32604/csse.2023.034613

    Abstract The fifth-generation (5G) wireless technology is the most recent standardization in communication services of interest across the globe. The concept of Multiple-Input-Multiple-Output antenna (MIMO) systems has recently been incorporated to operate at higher frequencies without limitations. This paper addresses, design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz, respectively for 5G millimeter (mm)-wave applications. The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53 × 7.85 × 0.8 mm3. The patch antenna is fully grounded and is fed with a 50-ohm stepped impedance… More >

  • Open Access

    ARTICLE

    Machine Learning Based Classifiers for QoE Prediction Framework in Video Streaming over 5G Wireless Networks

    K. B. Ajeyprasaath, P. Vetrivelan*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1919-1939, 2023, DOI:10.32604/cmc.2023.036013

    Abstract Recently, the combination of video services and 5G networks have been gaining attention in the wireless communication realm. With the brisk advancement in 5G network usage and the massive popularity of three-dimensional video streaming, the quality of experience (QoE) of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends. Therefore, effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction. This work makes the following contribution: First, a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services. The simulation is formulated to offer real-time… More >

  • Open Access

    ARTICLE

    Modeling and TOPSIS-GRA Algorithm for Autonomous Driving Decision-Making Under 5G-V2X Infrastructure

    Shijun Fu1,*, Hongji Fu2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1051-1071, 2023, DOI:10.32604/cmc.2023.034495

    Abstract This paper is to explore the problems of intelligent connected vehicles (ICVs) autonomous driving decision-making under a 5G-V2X structured road environment. Through literature review and interviews with autonomous driving practitioners, this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system. Secondly, situated on this framework, it builds a hierarchical finite state machine (HFSM) model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method (EWM) and analytic hierarchy process method (AHP) and by employing a model fusion approach between the technique for… More >

  • Open Access

    ARTICLE

    A 37 GHz Millimeter-Wave Antenna Array for 5G Communication Terminals

    Jalal Khan1, Sadiq Ullah1,*, Usman Ali1, Ladislau Matekovits2,3,4, Farooq Ahmad Tahir5, Muhammad Inam Abbasi6

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1317-1330, 2023, DOI:10.32604/cmc.2023.029879

    Abstract This work presents, design and specific absorption rate (SAR) analysis of a 37 GHz antenna, for 5th Generation (5G) applications. The proposed antenna comprises of 4-elements of rectangular patch and an even distribution. The radiating element is composed of copper material supported by Rogers RT5880 substrate of thickness, 0.254 mm, dielectric constant (εr), 2.2, and loss tangent, 0.0009. The 4-elements array antenna is compact in size with a dimension of 8 mm × 20 mm in length and width. The radiating patch is excited with a 50 ohms connector i.e., K-type. The antenna resonates in the frequency band of 37 GHz, that covers the 5G applications. The antenna… More >

  • Open Access

    ARTICLE

    Fuzzy Logic Based Handover Authentication in 5g Telecommunication Heterogeneous Networks

    J. Divakaran1,*, Arvind Chakrapani2, K. Srihari3

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1141-1152, 2023, DOI:10.32604/csse.2023.028050

    Abstract Under various deployment circumstances, fifth-generation (5G) telecommunications delivers improved network compound management with fast communication channels. Due to the introduction of the Internet of Things (IoT) in data management, the majority of the ultra-dense network models in 5G networks frequently have decreased spectral efficiency, weak handover management, and vulnerabilities. The majority of traditional handover authentication models are seriously threatened, making them vulnerable to a variety of security attacks. The authentication of networked devices is the most important issue. Therefore, a model that incorporates the handover mechanism and authentication model must be created. This article uses a fuzzy logic model to… More >

  • Open Access

    ARTICLE

    Shaped Offset Quadrature Phase Shift Keying Based Waveform for Fifth Generation Communication

    R. Ann Caroline Jenifer*, M. A. Bhagyaveni, V. Saroj Malini, M. Shanmugapriya

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2165-2176, 2023, DOI:10.32604/iasc.2023.031840

    Abstract Fifth generation (5G) wireless networks must meet the needs of emerging technologies like the Internet of Things (IoT), Vehicle-to-everything (V2X), Video on Demand (VoD) services, Device to Device communication (D2D) and many other bandwidth-hungry multimedia applications that connect a huge number of devices. 5G wireless networks demand better bandwidth efficiency, high data rates, low latency, and reduced spectral leakage. To meet these requirements, a suitable 5G waveform must be designed. In this work, a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing (SOQPSK-OFDM) is proposed for 5G to provide bandwidth efficiency, reduced spectral leakage, and… More >

Displaying 11-20 on page 2 of 151. Per Page