Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    An Intelligent Admission Control Scheme for Dynamic Slice Handover Policy in 5G Network Slicing

    Ratih Hikmah Puspita1, Jehad Ali1,*, Byeong-hee Roh2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4611-4631, 2023, DOI:10.32604/cmc.2023.033598

    Abstract 5G use cases, for example enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and an ultra-reliable low latency communication (URLLC), need a network architecture capable of sustaining stringent latency and bandwidth requirements; thus, it should be extremely flexible and dynamic. Slicing enables service providers to develop various network slice architectures. As users travel from one coverage region to another area, the call must be routed to a slice that meets the same or different expectations. This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks. Rules of thumb which indicates the accuracy… More >

  • Open Access

    ARTICLE

    Machine Learning Based Classifiers for QoE Prediction Framework in Video Streaming over 5G Wireless Networks

    K. B. Ajeyprasaath, P. Vetrivelan*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1919-1939, 2023, DOI:10.32604/cmc.2023.036013

    Abstract Recently, the combination of video services and 5G networks have been gaining attention in the wireless communication realm. With the brisk advancement in 5G network usage and the massive popularity of three-dimensional video streaming, the quality of experience (QoE) of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends. Therefore, effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction. This work makes the following contribution: First, a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services. The simulation is formulated to offer real-time… More >

  • Open Access

    ARTICLE

    An Enhanced Group Key-Based Security Protocol to Protect 5G SON Against FBS

    Hoonyong Park1, TaeGuen Kim1, Daniel Gerbi Duguma1, Jiyoon Kim2, Ilsun You2,*, Willy Susilo3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1145-1165, 2023, DOI:10.32604/csse.2023.032044

    Abstract Network operators are attempting many innovations and changes in 5G using self-organizing networks (SON). The SON operates on the measurement reports (MR), which are obtained from user equipment (UE) and secured against malware and userspace programs. However, the synchronization signal block that the UE relies on to measure the wireless environment configured by a base station is not authenticated. As a result, the UE will likely gauge the wrong wireless environment configured by a false base station (FBS) and transmit the corresponding MR to the serving base station, which poisons the data used for 5G SONs. Therefore, the serving base… More >

  • Open Access

    ARTICLE

    Optimal Resource Allocation for NOMA Wireless Networks

    Fahad R. Albogamy1, M. A. Aiyashi2, Fazirul Hisyam Hashim3, Imran Khan4, Bong Jun Choi5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3249-3261, 2023, DOI:10.32604/cmc.2023.031673

    Abstract The non-orthogonal multiple access (NOMA) method is a novel multiple access technique that aims to increase spectral efficiency (SE) and accommodate enormous user accesses. Multi-user signals are superimposed and transmitted in the power domain at the transmitting end by actively implementing controllable interference information, and multi-user detection algorithms, such as successive interference cancellation (SIC), are performed at the receiving end to demodulate the necessary user signals. Although its basic signal waveform, like LTE baseline, could be based on orthogonal frequency division multiple access (OFDMA) or discrete Fourier transform (DFT)-spread OFDM, NOMA superimposes numerous users in the power domain. In contrast… More >

  • Open Access

    ARTICLE

    Detection Collision Flows in SDN Based 5G Using Machine Learning Algorithms

    Aqsa Aqdus1, Rashid Amin1,*, Sadia Ramzan1, Sultan S. Alshamrani2, Abdullah Alshehri3, El-Sayed M. El-kenawy4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1413-1435, 2023, DOI:10.32604/cmc.2023.031719

    Abstract The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of data. The traffic control and data forwarding functions are decoupled in software-defined networking (SDN) and allow the network to be programmable. Each switch in SDN keeps track of forwarding information in a flow table. The SDN switches must search the flow table for the flow rules that match the packets to handle the incoming packets. Due to the obvious vast quantity of data in data centres, the capacity of the flow table restricts the data plane’s forwarding capabilities.… More >

  • Open Access

    ARTICLE

    Towards Fully Secure 5G Ultra-Low Latency Communications: A Cost-Security Functions Analysis

    Borja Bordel1,*, Ramón Alcarria1, Joaquin Chung2, Rajkumar Kettimuthu2, Tomás Robles1, Iván Armuelles3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 855-880, 2023, DOI:10.32604/cmc.2023.026787

    Abstract Future components to enhance the basic, native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered, or lightweight solutions adapted to ultra-reliable low-latency communications (URLLC) but whose security properties remain under discussion. Although different 5G network slices may have different requirements, in general, both visions seem to fall short at provisioning secure URLLC in the future. In this work we address this challenge, by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks. We categorize those… More >

  • Open Access

    ARTICLE

    SFC Design and VNF Placement Based on Traffic Volume Scaling and VNF Dependency in 5G Networks

    Zhihao Zeng*, Zixiang Xia, Xiaoning Zhang, Yexiao He

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1791-1814, 2023, DOI:10.32604/cmes.2022.021648

    Abstract The development of Fifth-Generation (5G) mobile communication technology has remarkably promoted the spread of the Internet of Things (IoT) applications. As a promising paradigm for IoT, edge computing can process the amount of data generated by mobile intelligent devices in less time response. Network Function Virtualization (NFV) that decouples network functions from dedicated hardware is an important architecture to implement edge computing, deploying heterogeneous Virtual Network Functions (VNF) (such as computer vision, natural language processing, intelligent control, etc.) on the edge service nodes. With the NFV MANO (Management and Orchestration) framework, a Service Function Chain (SFC) that contains a set… More >

  • Open Access

    ARTICLE

    Base Station Energy Management in 5G Networks Using Wide Range Control Optimization

    J. Premalatha*, A. SahayaAnselin Nisha

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 811-826, 2023, DOI:10.32604/iasc.2023.026523

    Abstract The traffic activity of fifth generation (5G) networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation (4G) network technologies that demand always for varied control and data signalling based on control base station (CBS) and data base station (DBS). Hence, this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network. As the new radio (NR) based 5G network is configured to transmit signal blocks for every 20 ms, the proposed… More >

  • Open Access

    ARTICLE

    Power Allocation in NOMA-CR for 5G Enabled IoT Networks

    Mohammed Basheri1, Mohammad Haseeb Zafar1,2,3,*, Imran Khan3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5515-5530, 2022, DOI:10.32604/cmc.2022.027532

    Abstract In the power domain, non-orthogonal multiple access (NOMA) supports multiple users on the same time-frequency resources, assigns different transmission powers to different users, and differentiates users by user channel gains. Multi-user signals are superimposed and transmitted in the power domain at the transmitting end by actively implementing controllable interference information, and multi-user detection algorithms, such as successive interference cancellation (SIC) is performed at the receiving end to demodulate the necessary user signals. In contrast to the orthogonal transmission method, the non-orthogonal method can achieve higher spectrum utilization. However, it will increase the receiver complexity. With the development of microelectronics technology,… More >

  • Open Access

    ARTICLE

    Conflict Resolution Strategy in Handover Management for 4G and 5G Networks

    Abdulraqeb Alhammadi1,*, Wan Haslina Hassan1, Ayman A. El-Saleh2, Ibraheem Shayea3, Hafizal Mohamad4, Yousef Ibrahim Daradkeh5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5215-5232, 2022, DOI:10.32604/cmc.2022.024713

    Abstract Fifth-generation (5G) cellular networks offer high transmission rates in dense urban environments. However, a massive deployment of small cells will be required to provide wide-area coverage, which leads to an increase in the number of handovers (HOs). Mobility management is an important issue that requires considerable attention in heterogeneous networks, where 5G ultra-dense small cells coexist with current fourth-generation (4G) networks. Although mobility robustness optimization (MRO) and load balancing optimization (LBO) functions have been introduced in the 3GPP standard to address HO problems, non-robust and nonoptimal algorithms for selecting appropriate HO control parameters (HCPs) still exist, and an optimal solution… More >

Displaying 1-10 on page 1 of 22. Per Page  

Share Link