Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    Explore Advanced Hybrid Deep Learning for Enhanced Wireless Signal Detection in 5G OFDM Systems

    Ahmed K. Ali1, Jungpil Shin2,*, Yujin Lim3,*, Da-Hun Seong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4245-4278, 2025, DOI:10.32604/cmes.2025.073871 - 23 December 2025

    Abstract Single-signal detection in orthogonal frequency-division multiplexing (OFDM) systems presents a challenge due to the time-varying nature of wireless channels. Although conventional methods have limitations, particularly in multi-input multioutput orthogonal frequency division multiplexing (MIMO-OFDM) systems, this paper addresses this problem by exploring advanced deep learning approaches for combined channel estimation and signal detection. Specifically, we propose two hybrid architectures that integrate a convolutional neural network (CNN) with a recurrent neural network (RNN), namely, CNN-long short-term memory (CNN-LSTM) and CNN-bidirectional-LSTM (CNN-Bi-LSTM), designed to enhance signal detection performance in MIMO-OFDM systems. The proposed CNN-LSTM and CNN-Bi-LSTM architectures are… More >

  • Open Access

    ARTICLE

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

    I Wayan Adi Juliawan Pawana1,2, Vincent Abella2, Jhury Kevin Lastre2, Yongho Ko2, Ilsun You2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2733-2760, 2025, DOI:10.32604/cmes.2025.072611 - 26 November 2025

    Abstract Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies, uneven Security Edge Protection Proxy (SEPP) deployment, and the dynamic nature of inter-Public Land Mobile Network (inter-PLMN) signaling. Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks, particularly as roaming expands into enterprise and Internet of Things (IoT) domains. This work addresses these challenges by designing a scalable 5G Standalone testbed, generating the first intrusion detection dataset specifically tailored to roaming threats, and proposing a deep learning based intrusion detection framework for cloud-native environments.… More > Graphic Abstract

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

  • Open Access

    ARTICLE

    An AI/ML Framework-Driven Approach for Malicious Traffic Detection in Open RAN

    Suhyeon Lee1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2657-2682, 2025, DOI:10.32604/cmes.2025.070627 - 26 November 2025

    Abstract The open nature and heterogeneous architecture of Open Radio Access Network (Open RAN) undermine the consistency of security policies and broaden the attack surface, thereby increasing the risk of security vulnerabilities. The dynamic nature of network performance and traffic patterns in Open RAN necessitates advanced detection models that can overcome the constraints of traditional techniques and adapt to evolving behaviors. This study presents a methodology for effectively detecting malicious traffic in Open RAN by utilizing an Artificial-Intelligence/Machine-Learning (AI/ML) Framework. A hybrid Transformer–Convolutional-Neural-Network (Transformer-CNN) ensemble model is employed for anomaly detection. The proposed model generates final More >

  • Open Access

    ARTICLE

    Traffic Profiling and Secure Virtualized Data Handling of 5G Networks via MinIO Storage

    Khawaja Tahir Mehmood1,*, Muhammad Majid Hussain2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5643-5670, 2025, DOI:10.32604/cmc.2025.068404 - 23 October 2025

    Abstract In the modern era of 5th generation (5G) networks, the data generated by User Equipments (UE) has increased significantly, with data file sizes varying from modest sensor logs to enormous multimedia files. In modern telecommunications networks, the need for high-end security and efficient management of these large data files is a great challenge for network designers. The proposed model provides the efficient real-time virtual data storage of UE data files (light and heavy) using an object storage system MinIO having inbuilt Software Development Kits (SDKs) that are compatible with Amazon (S3) Application Program Interface (API)… More >

  • Open Access

    REVIEW

    Federated Learning in Convergence ICT: A Systematic Review on Recent Advancements, Challenges, and Future Directions

    Imran Ahmed1,#, Misbah Ahmad2,3,#, Gwanggil Jeon4,5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4237-4273, 2025, DOI:10.32604/cmc.2025.068319 - 23 October 2025

    Abstract The rapid convergence of Information and Communication Technologies (ICT), driven by advancements in 5G/6G networks, cloud computing, Artificial Intelligence (AI), and the Internet of Things (IoT), is reshaping modern digital ecosystems. As massive, distributed data streams are generated across edge devices and network layers, there is a growing need for intelligent, privacy-preserving AI solutions that can operate efficiently at the network edge. Federated Learning (FL) enables decentralized model training without transferring sensitive data, addressing key challenges around privacy, bandwidth, and latency. Despite its benefits in enhancing efficiency, real-time analytics, and regulatory compliance, FL adoption faces… More >

  • Open Access

    ARTICLE

    ScalaDetect-5G: Ultra High-Precision Highly Elastic Deep Intrusion Detection System for 5G Network

    Shengjia Chang, Baojiang Cui*, Shaocong Feng

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3805-3827, 2025, DOI:10.32604/cmes.2025.067756 - 30 September 2025

    Abstract With the rapid advancement of mobile communication networks, key technologies such as Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) have enhanced the quality of service for 5G users but have also significantly increased the complexity of network threats. Traditional static defense mechanisms are inadequate for addressing the dynamic and heterogeneous nature of modern attack vectors. To overcome these challenges, this paper presents a novel algorithmic framework, SD-5G, designed for high-precision intrusion detection in 5G environments. SD-5G adopts a three-stage architecture comprising traffic feature extraction, elastic representation, and adaptive classification. Specifically, an enhanced Concrete… More >

  • Open Access

    ARTICLE

    Temporal Attention LSTM Network for NGAP Anomaly Detection in 5GC Boundary

    Shaocong Feng, Baojiang Cui*, Shengjia Chang, Meiyi Jiang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2567-2590, 2025, DOI:10.32604/cmes.2025.067326 - 31 August 2025

    Abstract Service-Based Architecture (SBA) of 5G network introduces novel communication technology and advanced features, while simultaneously presenting new security requirements and challenges. Commercial 5G Core (5GC) networks are highly secure closed systems with interfaces defined through the 3rd Generation Partnership Project (3GPP) specifications to fulfill communication requirements. However, the 5GC boundary, especially the access domain, faces diverse security threats due to the availability of open-source cellular software suites and Software Defined Radio (SDR) devices. Therefore, we systematically summarize security threats targeting the N2 interfaces at the 5GC boundary, which are categorized as Illegal Registration, Protocol attack,… More >

  • Open Access

    ARTICLE

    Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial Intelligence

    Sarmad K. Ibrahim1,*, Saif A. Abdulhussien2, Hazim M. ALkargole1, Hassan H. Qasim1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5223-5238, 2025, DOI:10.32604/cmc.2025.066548 - 30 July 2025

    Abstract The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communication (URLLC), and Massive Machine Type Communication (mMTC)—present tremendous challenges to conventional methods of bandwidth allocation. A new deep reinforcement learning-based (DRL-based) bandwidth allocation system for real-time, dynamic management of 5G radio access networks is proposed in this paper. Unlike rule-based and static strategies, the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput, fairness, and compliance with QoS requirements. By using… More >

  • Open Access

    ARTICLE

    Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning

    Mohammad Tabrez Quasim1,*, Khair Ul Nisa1, Mohammad Shahid Husain2, Abakar Ibraheem Abdalla Aadam1, Mohammed Waseequ Sheraz1, Mohammad Zunnun Khan1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1169-1187, 2025, DOI:10.32604/cmc.2025.062989 - 09 June 2025

    Abstract Smart edge computing (SEC) is a novel paradigm for computing that could transfer cloud-based applications to the edge network, supporting computation-intensive services like face detection and natural language processing. A core feature of mobile edge computing, SEC improves user experience and device performance by offloading local activities to edge processors. In this framework, blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers, protecting against potential security threats. Additionally, Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically. IoT applications that require significant resources… More >

  • Open Access

    ARTICLE

    Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2391-2415, 2025, DOI:10.32604/cmes.2025.063558 - 30 May 2025

    Abstract This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service (DDoS) attacks in 5th generation technology standard (5G) slicing networks. The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data. These representations are then used as input for a support vector machine (SVM)-based metadata classifier, enabling precise detection of attack traffic. This architecture is designed to achieve both high detection accuracy and training efficiency, while adapting flexibly to the diverse service requirements and complexity of 5G network… More >

Displaying 1-10 on page 1 of 169. Per Page