Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (157)
  • Open Access

    ARTICLE

    Advancing 5G Network Applications Lifecycle Security: An ML-Driven Approach

    Ana Hermosilla1,2,*, Jorge Gallego-Madrid1, Pedro Martinez-Julia3, Jordi Ortiz4, Ved P. Kafle3, Antonio Skarmeta1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1447-1471, 2024, DOI:10.32604/cmes.2024.053379 - 27 September 2024

    Abstract As 5th Generation (5G) and Beyond 5G (B5G) networks become increasingly prevalent, ensuring not only network security but also the security and reliability of the applications, the so-called network applications, becomes of paramount importance. This paper introduces a novel integrated model architecture, combining a network application validation framework with an AI-driven reactive system to enhance security in real-time. The proposed model leverages machine learning (ML) and artificial intelligence (AI) to dynamically monitor and respond to security threats, effectively mitigating potential risks before they impact the network infrastructure. This dual approach not only validates the functionality… More >

  • Open Access

    ARTICLE

    Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems

    R. Mahaveerakannan1, Thanarajan Tamilvizhi2,*, Sonia Jenifer Rayen3, Osamah Ibrahim Khalaf4, Habib Hamam5,6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3945-3966, 2024, DOI:10.32604/cmc.2024.051611 - 12 September 2024

    Abstract The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content. In light of the data-centric aspect of contemporary communication, the information-centric network (ICN) paradigm offers hope for a solution by emphasizing content retrieval by name instead of location. If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things (IoT) devices, then effective caching solutions will be required to maximize network throughput and minimize the use of resources. Hence, an ICN-based Cooperative Caching (ICN-CoC) technique has been used to select… More >

  • Open Access

    ARTICLE

    Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication

    Huanhuan Li1,2,*, Hongchang Wei2, Zheliang Chen2, Yue Xu3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2199-2219, 2024, DOI:10.32604/cmc.2024.052155 - 15 August 2024

    Abstract The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges, such as low user utilization, unbalanced resource allocation, and extended adaptive allocation time. We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues. This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components. It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes. Furthermore, this study analyzes the single-hop and multi-hop modes in… More >

  • Open Access

    ARTICLE

    Federated Network Intelligence Orchestration for Scalable and Automated FL-Based Anomaly Detection in B5G Networks

    Pablo Fernández Saura1,*, José M. Bernabé Murcia1, Emilio García de la Calera Molina1, Alejandro Molina Zarca2, Jorge Bernal Bernabé1, Antonio F. Skarmeta Gómez1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 163-193, 2024, DOI:10.32604/cmc.2024.051307 - 18 July 2024

    Abstract The management of network intelligence in Beyond 5G (B5G) networks encompasses the complex challenges of scalability, dynamicity, interoperability, privacy, and security. These are essential steps towards achieving the realization of truly ubiquitous Artificial Intelligence (AI)-based analytics, empowering seamless integration across the entire Continuum (Edge, Fog, Core, Cloud). This paper introduces a Federated Network Intelligence Orchestration approach aimed at scalable and automated Federated Learning (FL)-based anomaly detection in B5G networks. By leveraging a horizontal Federated learning approach based on the FedAvg aggregation algorithm, which employs a deep autoencoder model trained on non-anomalous traffic samples to recognize… More >

  • Open Access

    ARTICLE

    5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm

    Amel Ali Alhussan1, S. K. Towfek2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1179-1201, 2024, DOI:10.32604/cmc.2024.049874 - 18 July 2024

    Abstract In the contemporary world of highly efficient technological development, fifth-generation technology (5G) is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second (Gbps). As far as the current implementations are concerned, they are at the level of slightly below 1 Gbps, but this allowed a great leap forward from fourth generation technology (4G), as well as enabling significantly reduced latency, making 5G an absolute necessity for applications such as gaming, virtual conferencing, and other interactive electronic processes. Prospects of this change are not limited to connectivity… More >

  • Open Access

    ARTICLE

    Improving Channel Estimation in a NOMA Modulation Environment Based on Ensemble Learning

    Lassaad K. Smirani1, Leila Jamel2,*, Latifah Almuqren2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1315-1337, 2024, DOI:10.32604/cmes.2024.047551 - 20 May 2024

    Abstract This study presents a layered generalization ensemble model for next generation radio mobiles, focusing on supervised channel estimation approaches. Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout. The model, called Stacked Generalization for Channel Estimation (SGCE), aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput. The SGCE model incorporates six machine learning methods: random forest (RF), gradient boosting machine (GB), light gradient boosting machine (LGBM), support vector regression (SVR), extremely randomized tree (ERT), and extreme gradient boosting (XGB). By generating meta-data from five… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning Approach for Improvised QoE in Video Services over 5G Wireless Networks

    K. B. Ajeyprasaath, P. Vetrivelan*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3195-3213, 2024, DOI:10.32604/cmc.2023.046911 - 26 March 2024

    Abstract Video streaming applications have grown considerably in recent years. As a result, this becomes one of the most significant contributors to global internet traffic. According to recent studies, the telecommunications industry loses millions of dollars due to poor video Quality of Experience (QoE) for users. Among the standard proposals for standardizing the quality of video streaming over internet service providers (ISPs) is the Mean Opinion Score (MOS). However, the accurate finding of QoE by MOS is subjective and laborious, and it varies depending on the user. A fully automated data analytics framework is required to… More >

  • Open Access

    REVIEW

    Wireless Positioning: Technologies, Applications, Challenges, and Future Development Trends

    Xingwang Li1,2, Hua Pang1, Geng Li1,*, Junjie Jiang1, Hui Zhang3, Changfei Gu4, Dong Yuan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1135-1166, 2024, DOI:10.32604/cmes.2023.031534 - 29 January 2024

    Abstract The development of the fifth-generation (5G) mobile communication systems has entered the commercialization stage. 5G has a high data rate, low latency, and high reliability that can meet the basic demands of most industries and daily life, such as the Internet of Things (IoT), intelligent transportation systems, positioning, and navigation. The continuous progress and development of society have aroused wide concern. Positioning accuracy is the core demand for the applications, especially in complex environments such as airports, warehouses, supermarkets, and basements. However, many factors also affect the accuracy of positioning in those environments, for example, More >

  • Open Access

    ARTICLE

    New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications

    Shimaa M. Amer1, Ashraf A. M. Khalaf2, Amr H. Hussein3,4, Salman A. Alqahtani5, Mostafa H. Dahshan6, Hossam M. Kassem3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2749-2767, 2024, DOI:10.32604/cmes.2023.029138 - 15 December 2023

    Abstract Side lobe level reduction (SLL) of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service (QOS) in recent and future wireless communication systems starting from 5G up to 7G. Furthermore, it improves the array gain and directivity, increasing the detection range and angular resolution of radar systems. This study proposes two highly efficient SLL reduction techniques. These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm (GA) to develop the Conv/GA and DConv/GA, respectively. The convolution process determines the element’s… More >

  • Open Access

    ARTICLE

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

    Xiaoli Li, Tongtong Jiao#, Jinfeng Ma, Dongxing Duan, Shengbin Liang#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 595-617, 2024, DOI:10.32604/cmes.2023.029367 - 22 September 2023

    Abstract In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the… More > Graphic Abstract

    LSDA-APF: A Local Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on 5G Communication Environment

Displaying 1-10 on page 1 of 157. Per Page