Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Advancing Brain Tumor Analysis through Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis

    S. Kannan1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3835-3851, 2023, DOI:10.32604/cmc.2023.042465 - 26 December 2023

    Abstract Gliomas, the most prevalent primary brain tumors, require accurate segmentation for diagnosis and risk assessment. In this paper, we develop a novel deep learning-based method, the Dynamic Hierarchical Attention for Improved Segmentation and Survival Prognosis (DHA-ISSP) model. The DHA-ISSP model combines a three-band 3D convolutional neural network (CNN) U-Net architecture with dynamic hierarchical attention mechanisms, enabling precise tumor segmentation and survival prediction. The DHA-ISSP model captures fine-grained details and contextual information by leveraging attention mechanisms at multiple levels, enhancing segmentation accuracy. By achieving remarkable results, our approach surpasses 369 competing teams in the 2020 Multimodal… More >

Displaying 1-10 on page 1 of 1. Per Page