Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Side-Scan Sonar Image Synthesis Based on CycleGAN with 3D Models and Shadow Integration

    Byeongjun Kim1,#, Seung-Hun Lee2,#, Won-Du Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1237-1252, 2025, DOI:10.32604/cmes.2025.073530 - 26 November 2025

    Abstract Side-scan sonar (SSS) is essential for acquiring high-resolution seafloor images over large areas, facilitating the identification of subsea objects. However, military security restrictions and the scarcity of subsea targets limit the availability of SSS data, posing challenges for Automatic Target Recognition (ATR) research. This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks (CycleGAN) to augment SSS images of key subsea objects, such as shipwrecks, aircraft, and drowning victims. The process begins by constructing 3D models to generate rendered images with realistic shadows from multiple angles. To enhance image quality, a shadow extractor and More >

  • Open Access

    ARTICLE

    Solid Model Generation and Shape Analysis of Human Crystalline Lens Using 3D Digitization and Scanning Techniques

    José Velázquez, Dolores Ojados, Adrián Semitiel, Francisco Cavas*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1821-1837, 2025, DOI:10.32604/cmes.2025.071131 - 26 November 2025

    Abstract This research establishes a methodological framework for generating geometrically accurate 3D representations of human crystalline lenses through scanning technologies and digital reconstruction. Multiple scanning systems were evaluated to identify optimal approaches for point cloud processing and subsequent development of parameterized solid models, facilitating comprehensive morpho-geometric characterization. Experimental work was performed at the 3D Scanning Laboratory of SEDIC (Industrial Design and Scientific Calculation Service) at the Technical University of Cartagena, employing five distinct scanner types based on structured light, laser, and infrared technologies. Test specimens—including preliminary calibration using a lentil and biological analysis of a human… More >

  • Open Access

    ARTICLE

    Three-Dimensional Model Classification Based on VIT-GE and Voting Mechanism

    Fang Yuan, Xueyao Gao*, Chunxiang Zhang

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5037-5055, 2025, DOI:10.32604/cmc.2025.067760 - 23 October 2025

    Abstract 3D model classification has emerged as a significant research focus in computer vision. However, traditional convolutional neural networks (CNNs) often struggle to capture global dependencies across both height and width dimensions simultaneously, leading to limited feature representation capabilities when handling complex visual tasks. To address this challenge, we propose a novel 3D model classification network named ViT-GE (Vision Transformer with Global and Efficient Attention), which integrates Global Grouped Coordinate Attention (GGCA) and Efficient Channel Attention (ECA) mechanisms. Specifically, the Vision Transformer (ViT) is employed to extract comprehensive global features from multi-view inputs using its self-attention More >

  • Open Access

    REVIEW

    Cancer 3D Models: Essential Tools for Understanding and Overcoming Drug Resistance

    Sofija Jovanović Stojanov1, Marija Grozdanić1, Mila Ljujić2, Sandra Dragičević2, Miodrag Dragoj1, Jelena Dinić1,*

    Oncology Research, Vol.33, No.10, pp. 2741-2785, 2025, DOI:10.32604/or.2025.067126 - 26 September 2025

    Abstract Anticancer drug resistance remains a major challenge in cancer treatment hindering the efficacy of chemotherapy and targeted therapies. Conventional two-dimensional (2D) cell cultures cannot replicate the complexity of the in vivo tumor microenvironment (TME), limiting their utility for drug resistance research. Therefore, three-dimensional (3D) tumor models have proven to be a promising alternative for investigating chemoresistance mechanisms. In this review, various cancer 3D models, including spheroids, organoids, scaffold-based models, and bioprinted models, are comprehensively evaluated with a focus on their application in drug resistance studies. We discuss the materials, properties, and advantages of each model, highlighting More > Graphic Abstract

    Cancer 3D Models: Essential Tools for Understanding and Overcoming Drug Resistance

  • Open Access

    ARTICLE

    3D Exact Magneto-Electro-Elastic Static Analysis of Multilayered Plates

    Salvatore Brischetto*, Domenico Cesare, Tommaso Mondino

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 643-668, 2025, DOI:10.32604/cmes.2025.066313 - 31 July 2025

    Abstract This study proposes a three-dimensional (3D) coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations. The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations, the 3D divergence equation for magnetic induction, and the 3D divergence equation for the electric displacement. The proposed solution involves the exponential matrix in the thickness direction and primary variables’ harmonic forms in the in-plane ones. A closed-form solution is performed considering simply-supported boundary… More >

  • Open Access

    ARTICLE

    Non-Neural 3D Nasal Reconstruction: A Sparse Landmark Algorithmic Approach for Medical Applications

    Nguyen Khac Toan1, Ho Nguyen Anh Tuan2, Nguyen Truong Thinh1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1273-1295, 2025, DOI:10.32604/cmes.2025.064218 - 30 May 2025

    Abstract This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods. The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery. The approach leverages advanced image processing techniques, 3D Morphable Models (3DMM), and deformation techniques to overcome the limitations of deep learning models, particularly addressing the interpretability issues commonly encountered in medical applications. The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm. Sub-landmarks… More > Graphic Abstract

    Non-Neural 3D Nasal Reconstruction: A Sparse Landmark Algorithmic Approach for Medical Applications

  • Open Access

    ARTICLE

    Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers

    Ziqiang Tang1, Chao Han1, Hongwu Li1, Zhou Fan1, Ke Sun1, Yuntian Huang1, Yuhang Chen2, Chenxing Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2813-2829, 2025, DOI:10.32604/cmc.2024.059094 - 17 February 2025

    Abstract Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask… More >

  • Open Access

    ARTICLE

    Pothole Detection Based on UAV Photogrammetry

    Muhammad Aliff Haiqal Darmawan1, Shahrul Nizan Abd Mukti2, Khairul Nizam Tahar1,*

    Revue Internationale de Géomatique, Vol.34, pp. 21-35, 2025, DOI:10.32604/rig.2024.057266 - 13 January 2025

    Abstract Potholes are the most prevalent type of structural defect found on roads, caused by aging infrastructure, heavy rains, heavy traffic, thin or weak substructures, and other factors. Regular assessment of road conditions is essential for maintaining and improving road networks. Current techniques for identifying potholes on urban roadways primarily rely on public reporting, such as hotlines or social networking websites, which are both time-consuming and inefficient. This study aims to detect potholes using Unmanned Aerial Vehicles (UAVs) images, enabling accurate analysis of their size, shape, and location, thereby enhancing detection efficiency compared to conventional methods.… More >

  • Open Access

    CORRECTION

    Correction: Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1,2, Huali Pan1,*, Jiangcheng Huang3, Bilal Ahmed4, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2625-2625, 2024, DOI:10.32604/cmes.2024.059706 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    CORRECTION

    Correction: 3D Model Construction and Ecological Environment Investigation on a Regional Scale Using UAV Remote Sensing

    Chao Chen1,2, Yankun Chen3, Haohai Jin4, Li Chen5,*, Zhisong Liu3, Haozhe Sun4, Junchi Hong4, Haonan Wang4, Shiyu Fang4, Xin Zhang2

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 113-114, 2024, DOI:10.32604/iasc.2024.051760 - 29 March 2024

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 26. Per Page