Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1
CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336
- 26 March 2024
Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion More >