Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (378)
  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer,… More >

  • Open Access

    ARTICLE

    3D NUMERICAL ANALYSIS ON FLOW CONFIGURATIONS AND HEAT TRANSFER CHARACTERISTICS FOR FIN-AND-OVAL-TUBE HEAT EXCHANGER WITH V-DOWNSTREAM DELTA WINGLET VORTEX GENERATORS

    Amnart Boonloia, Withada Jedasadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-15, 2014, DOI:10.5098/hmt.5.19

    Abstract 3D numerical investigations for heat transfer characteristics and flow configurations in a fin–and-oval-tube heat exchanger with V-tip pointing downstream delta winglet pairs (DDWP) are examined. The DDWPs are placed on the fin surface with pointing downstream and the oval tube row number is set at three in a staggered arrangement. The flow attack angles (θ = 15°, 30°, 45° and 60°) and the distance from V-tip to the oval tube center in transverse axis (a = 3.77, 4.77 and 5.77 mm) are investigated for Reynolds number based on hydraulic diameter, Re = 500 – 2500. The numerical results are compared… More >

  • Open Access

    ARTICLE

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

    Zhuohuan Hu1, Sixian Sun1, Chengwei Yuan1, Yan Cao2, Jiayin Xu1,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 107-123, 2023, DOI:10.32604/fhmt.2023.041837

    Abstract Loop Heat Pipe (LHP) is an efficient two-phase heat transfer device, which can be used in waste heat recovery, electronics cooling, aerospace and other fields. The wick, the core component of LHP, plays an important role in its start-up and operation. In this paper, the wick fabricated by 3D printing technology had uniform and interconnected pores. In the experiment, the position of the parallel vapor removal grooves was always fixed towards the vapor outlet. When the cylindrical wick was placed in the evaporator, the rotation angle relative to its central axis could be changed, thus changing the number and shape… More > Graphic Abstract

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

  • Open Access

    ARTICLE

    EXPERIMENTAL AND 3D-CFD STUDY ON OPTIMIZATION OF CONTROL VALVE DIAMETER FOR A CONVERGENT VORTEX TUBE

    Seyed Ehsan Rafiee*, M. M. Sadeghiazad

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-15, 2016, DOI:10.5098/hmt.7.13

    Abstract The aim of this investigation is study on separation phenomenon inside a special vortex tube affected by structural and physical factors including; throttle diameter, nozzle number and injection pressure as well as the parametric optimization based on separation efficiency using experimental and 3D-CFD methods. The results show that convergent VT with Dth=5.5mm provides 30.01% and 20.04% higher cooling and heating effectiveness compared to basic model. As another result, the higher injection pressure, the higher cooling effectiveness. The cooling effectiveness improves (16.86%) with increase in slot number up to N=4, then decreases. The maximum disagreement between experimental and predicted values is… More >

  • Open Access

    ARTICLE

    MHD MIXED CONVECTION AND ENTROPY GENERATION IN A 3D LID-DRIVEN CAVITY

    Lioua Kolsia,b,*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.26

    Abstract In this study, the effects of Richardson and Hartmann numbers on heat and mass transfer in a three-dimensional lid-driven cubical cavity subjected to a uniform magnetic field are investigated numerically. The lid is maintained at constant high temperature and is moving downwards in the negative y-direction. The wall opposite to the lid is stationary and maintained at constant low temperature, and all other walls are kept adiabatic. Entropy generation is also calculated to investigate the nature of irreversibility in heat transfer inside the cavity. The computations are performed for the Richardson numbers 10 and 100, and Hartmann number in the… More >

  • Open Access

    ARTICLE

    3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles

    Dun Cao1, Jia Ru1, Jian Qin1, Amr Tolba2, Jin Wang1, Min Zhu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1365-1384, 2024, DOI:10.32604/cmes.2023.030260

    Abstract Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles, people, transportation infrastructure, and networks, thereby realizing a more intelligent and efficient transportation system. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topological structure of IoV to have the high space and time complexity. Network modeling and structure recognition for 3D roads can benefit the description of topological changes for IoV. This paper proposes a 3D general road model based on discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on… More >

  • Open Access

    ARTICLE

    Enhanced 3D Point Cloud Reconstruction for Light Field Microscopy Using U-Net-Based Convolutional Neural Networks

    Shariar Md Imtiaz1, Ki-Chul Kwon1, F. M. Fahmid Hossain1, Md. Biddut Hossain1, Rupali Kiran Shinde1, Sang-Keun Gil2, Nam Kim1,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2921-2937, 2023, DOI:10.32604/csse.2023.040205

    Abstract This article describes a novel approach for enhancing the three-dimensional (3D) point cloud reconstruction for light field microscopy (LFM) using U-net architecture-based fully convolutional neural network (CNN). Since the directional view of the LFM is limited, noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds. The existing methods suffer from these problems due to the self-occlusion of the model. This manuscript proposes a deep fusion learning (DL) method that combines a 3D CNN with a U-Net-based model as a feature extractor. The sub-aperture images obtained from the light field microscopy are aligned to form… More >

  • Open Access

    ARTICLE

    Action Recognition for Multiview Skeleton 3D Data Using NTURGB + D Dataset

    Rosepreet Kaur Bhogal1,*, V. Devendran2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2759-2772, 2023, DOI:10.32604/csse.2023.034862

    Abstract Human activity recognition is a recent area of research for researchers. Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities, develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition. This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further proposed two neural networks: convolutional neural network recurrent neural network_1 (CNN_RNN_1), used to find the… More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the same planes and points at… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    ARTICLE

    3D Kronecker Convolutional Feature Pyramid for Brain Tumor Semantic Segmentation in MR Imaging

    Kainat Nazir1, Tahir Mustafa Madni1, Uzair Iqbal Janjua1, Umer Javed2, Muhammad Attique Khan3, Usman Tariq4, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2861-2877, 2023, DOI:10.32604/cmc.2023.039181

    Abstract Brain tumor significantly impacts the quality of life and changes everything for a patient and their loved ones. Diagnosing a brain tumor usually begins with magnetic resonance imaging (MRI). The manual brain tumor diagnosis from the MRO images always requires an expert radiologist. However, this process is time-consuming and costly. Therefore, a computerized technique is required for brain tumor detection in MRI images. Using the MRI, a novel mechanism of the three-dimensional (3D) Kronecker convolution feature pyramid (KCFP) is used to segment brain tumors, resolving the pixel loss and weak processing of multi-scale lesions. A single dilation rate was replaced… More >

Displaying 21-30 on page 3 of 378. Per Page