Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (376)
  • Open Access

    ARTICLE

    Acrylic Finished Leather Upgraded with Thermoplastic Polyurethane Filament using 3D Printing – A New Generation Hybrid Leather of Synthetic and Natural Polymer

    SIVARAJ SUDHAHARa,f, UMAMAHESWARI Gb, JAYA PRAKASH ALLAc, RAGHAVA RAO JONNALAGADDAd, SUGUNA LAKSHMIe, SANJEEV GUPTAf,*

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 33-45, 2023, DOI:10.32381/JPM.2023.40.1-2.3

    Abstract Leather manufacturing process involves a lot of waste disposal which pollutes environment, some of the processes are inevitable. In the present investigation, 3D printing technology was used to reduce the wastage and to cover defective regions in leather. The present study focuses on synthesis of acrylic binder using emulsion polymerization technique. These binders were analysed for solid content for better optimisation of the amount of binder to be utilised for finishing operation. The experimental binder was prepared with 26% solids. Particle size and thermogravimetric analyses were carried out to understand the size and shape of the particles and their thermal… More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion features are extracted to mitigate… More >

  • Open Access

    ARTICLE

    Part-Whole Relational Few-Shot 3D Point Cloud Semantic Segmentation

    Shoukun Xu1, Lujun Zhang1, Guangqi Jiang1, Yining Hua2, Yi Liu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3021-3039, 2024, DOI:10.32604/cmc.2023.045853

    Abstract This paper focuses on the task of few-shot 3D point cloud semantic segmentation. Despite some progress, this task still encounters many issues due to the insufficient samples given, e.g., incomplete object segmentation and inaccurate semantic discrimination. To tackle these issues, we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity, which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks (CapsNets) in the embedding network. Concretely, the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations, which capture the relationships… More >

  • Open Access

    REVIEW

    A Review on Finite Element Alternating Methods for Analyzing 2D and 3D Cracks

    Jai Hak Park*

    Digital Engineering and Digital Twin, Vol.2, pp. 79-101, 2024, DOI:10.32604/dedt.2024.047280

    Abstract A finite element alternating method has been known as a very convenient and accurate method to solve two and three-dimensional crack problems. In this method, a general crack problem is solved by a superposition of two solutions. One is a finite element solution for a finite body without a crack, and the other is an analytical solution for a crack in an infinite body. Since a crack is not considered in a finite element model, generating a model is very simple. The method is especially very convenient for a fatigue crack growth simulation. Over the past 40 years, S. N.… More >

  • Open Access

    CORRECTION

    Correction: 3D Model Construction and Ecological Environment Investigation on a Regional Scale Using UAV Remote Sensing

    Chao Chen1,2, Yankun Chen3, Haohai Jin4, Li Chen5,*, Zhisong Liu3, Haozhe Sun4, Junchi Hong4, Haonan Wang4, Shiyu Fang4, Xin Zhang2

    Intelligent Automation & Soft Computing, Vol.39, No.1, pp. 113-114, 2024, DOI:10.32604/iasc.2024.051760

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the flow patterns and temperature distributions… More >

  • Open Access

    ARTICLE

    Numerical Study on 3D MHD Darcy-Forchheimer Flow Caused by Gyrotactic Microorganisms of the Bio-Convective Casson Nanofluid across a Stretched Sheet

    S. H. Elhag*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 377-395, 2024, DOI:10.32604/fhmt.2023.044428

    Abstract A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely. The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet. The inclusion of the nanoparticles is a result of their… More >

  • Open Access

    ARTICLE

    Movement Function Assessment Based on Human Pose Estimation from Multi-View

    Lingling Chen1,2,*, Tong Liu1, Zhuo Gong1, Ding Wang1

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 321-339, 2024, DOI:10.32604/csse.2023.037865

    Abstract Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position (or spatial coordinates) of the joints of the human body in a given image or video. It is widely used in motion analysis, medical evaluation, and behavior monitoring. In this paper, the authors propose a method for multi-view human pose estimation. Two image sensors were placed orthogonally with respect to each other to capture the pose of the subject as they moved, and this yielded accurate and comprehensive results of three-dimensional (3D) motion reconstruction that helped capture their multi-directional poses.… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF 3D THERMAL AND HYDRAULIC CHARACTERISTICS OF WAVY FIN AND TUBE HEAT EXCHANGER

    Arafat A. Bhuiyana,1, A. K. M. Sadrul Islama, M. Ruhul Aminb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-9, 2012, DOI:10.5098/hmt.v3.3.3006

    Abstract This numerical analysis presents the airside performance of a wavy fin-and-tube heat exchanger having 4 row configurations considering steady, incompressible and 3D flow using Commercial CFD Code ANSYS CFX 12.0. Results are presented in the form of friction factor (f), Colburn factor (j) and efficiency index (j/f). The numerical procedure has been validated by comparison with published numerical and experimental results and good agreement has been observed. A series of numerical calculations have been carried out in order to analyze the influence of various geometric characteristics on different fields as well as on the heat transfer and pressure drop and… More >

  • Open Access

    ARTICLE

    Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1, Huali Pan1,*, Jiangcheng Huang2, Bilal Ahmed3, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2835-2863, 2024, DOI:10.32604/cmes.2024.046993

    Abstract The present work aims to assess earthquake-induced earth-retaining (ER) wall displacement. This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels, reinforcement concrete facing panels, and gravity-type earth-retaining walls. The finite element (FE) simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses. The seismic performance of different models, which includes reinforcement concrete panels and gravity-type and hollow precast concrete ER walls, was simulated and examined using the FE approach. It also displays comparative studies such as stress distribution, deflection of the wall, acceleration across the… More >

Displaying 1-10 on page 1 of 376. Per Page