Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    Optimizing 2D Image Quality in CartoonGAN: A Novel Approach Using Enhanced Pixel Integration

    Stellar Choi1, HeeAe Ko2, KyungRok Bae3, HyunSook Lee2, HaeJong Joo4, Woong Choi5,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 335-355, 2025, DOI:10.32604/cmc.2025.061243 - 26 March 2025

    Abstract Previous research utilizing Cartoon Generative Adversarial Network (CartoonGAN) has encountered limitations in managing intricate outlines and accurately representing lighting effects, particularly in complex scenes requiring detailed shading and contrast. This paper presents a novel Enhanced Pixel Integration (EPI) technique designed to improve the visual quality of images generated by CartoonGAN. Rather than modifying the core model, the EPI approach employs post-processing adjustments that enhance images without significant computational overhead. In this method, images produced by CartoonGAN are converted from Red-Green-Blue (RGB) to Hue-Saturation-Value (HSV) format, allowing for precise adjustments in hue, saturation, and brightness, thereby… More >

  • Open Access

    ARTICLE

    A TimeImageNet Sequence Learning for Remaining Useful Life Estimation of Turbofan Engine in Aircraft Systems

    S. Kalyani*, K. Venkata Rao, A. Mary Sowjanya

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 317-334, 2021, DOI:10.32604/sdhm.2021.016975 - 23 November 2021

    Abstract Internet of Things systems generate a large amount of sensor data that needs to be analyzed for extracting useful insights on the health status of the machine under consideration. Sensor data of all possible states of a system are used for building machine learning models. These models are further used to predict the possible downtime for proactive action on the system condition. Aircraft engine data from run to failure is used in the current study. The run to failure data includes states like new installation, stable operation, first reported issue, erroneous operation, and final failure.… More >

Displaying 1-10 on page 1 of 3. Per Page