Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration

    Chun Sha1,*, Chaohui Yue2, Wenchen Wang3

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 369-381, 2023, DOI:10.32604/sdhm.2023.027948 - 07 September 2023

    Abstract Convolution neural networks in deep learning can solve the problem of damage identification based on vibration acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks, and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to generate submodels after offset sampling. When using submodels for damage identification, the voting method ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. More >

Displaying 1-10 on page 1 of 1. Per Page