Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

    Elham Azadeh1, Antonio Pizzi1,2,*, Christine Gerardin-Charbonnier1,*, Philippe Gerardin1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2823-2848, 2023, DOI:10.32604/jrm.2023.027651 - 27 April 2023

    Abstract Non-isocyanate polyurethane (NIPU) foams from a commercial hydrolysable tannin extract, chestnut wood tannin extract, have been prepared to determine what chemical species and products are taking part in the reactions involved. This method is based on two main steps: the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine. The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions. The carbohydrate skeleton of the… More > Graphic Abstract

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its  Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

  • Open Access

    ARTICLE

    Polycondensation Resins by Lignin Reaction with (Poly) amines

    F. J. Santiago-Medina1, A. Pizzi1, 2*, M. C. Basso1, L. Delmotte3, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 388-399, 2017, DOI:10.7569/JRM.2017.634142

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine as a model of a polyamine has been investigated. For this purpose, guaiacol was also used as a lignin model compound and treated under similar conditions. Solid state CP-MAS 13C NMR, FTIR and MALDI-TOF spectroscopy studies revealed that polycondensation compounds leading to resins were obtained by the reaction of the amines with the phenolic and aliphatic hydroxy groups of lignin. Simultaneously a second reaction leading to the formation of ionic bonds between the same groups occurred. These new reactions have been clearly shown to involve More >

Displaying 1-10 on page 1 of 2. Per Page