Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    PERFORMANCE OF NANOPOROUS FILTRATION MEMBRANE WITH CONICAL PORES: FOR A LIQUID-PARTICLE SEPARATION

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.14

    Abstract An analysis was developed for the flow resistance of the nanoporous filtration membrane with conical pores for a liquid-particle separation, based on the nanoscale flow model. The calculation results show that there exists the optimum cone angle of the conical pore which gives the lowest flow resistance and thus the highest flux of the membrane; This optimum cone angle of the conical pore depends on the radius of the small opening of the conical pore, the passing liquid-pore wall interaction and the membrane thickness. The equations were regressed out for calculating this optimum cone angle More >

  • Open Access

    ARTICLE

    A TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-5, 2018, DOI:10.5098/hmt.10.16

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is proposed. Across the thickness of this membrane are manufactured two kinds of pores i.e. one trunk pore and four uniform branch pores, these two kinds of pores have the same homogeneous surface property and are linked together, and they are uniformly distributed on the membrane surface; The branch pore is for filtration and its radius is on the 1nm or 10nm scales, while the trunk pore is for collecting the flow coming from its four branch pores and it is aimed for reducing the flow resistance and increasing… More >

  • Open Access

    ARTICLE

    TREE-TYPE NANOPOROUS FILTERING MEMBRANE WITH COMPLEX PORES

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.32

    Abstract A tree-type nanoporous filtering membrane with complex pores is proposed. The membrane consists of three kinds of concentric cylindrical pores across the membrane thickness i.e. the four branch pores for filtration, the one flow-collecting pore and the one flow resistance-reducing pore. The ratio of the radius of the flow resistance-reducing pore to that of the filtration pore is optimized for yielding the highest flux of the membrane. The dimensionless lowest flow resistance of the membrane in the optimum condition was typically calculated for different filtration pore radii and different passing liquid-pore wall interactions. The capability More >

  • Open Access

    ARTICLE

    PERFORMANCE OF THE OPTIMIZED TREE-TYPE CYLINDRICALSHAPED NANOPOROUS FILTERING MEMBRANES WITH 9 OR 10 BRANCH PORES IN EACH PORE TREE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.26

    Abstract The paper analytically studies the performance of the optimized tree-type cylindrical-shaped nanoporous filtering membranes with 9 or 10 branch pores in each pore tree. The optimum ratio of the radius of the trunk pore to the radius of its branch pore was found. The corresponding lowest flow resistances of the membranes were typically calculated respectively for weak, medium and strong liquid-pore wall interactions. For liquid-liquid separations, the optimum radii of the trunk pore in the membranes were calculated according to the weak liquid-pore wall interaction. The capability of the liquidliquid separation of the membranes was More >

  • Open Access

    ARTICLE

    AN OPTIMIZED TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.25

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is optimized with two levels of branches and a lot of branch pores. In this membrane, the branch pores are parallel with their trunk pore and their radius More >

  • Open Access

    ARTICLE

    INFLUENCE OF PORE WALL SURFACE PROPERTY ON FLUX OF CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.26

    Abstract The influence of pore wall surface property on the flux of a novel cylindrical-shaped nanoporous filtering membrane is analytically studied by using the flow factor approach model for a nanoscale flow. Across the thickness of the membrane are manufactured two concentric cylindrical pores with different radii. The smaller nanoscale pore is for filtration, while the other larger pore is for reducing the flow resistance. It was found that when the larger pore wall surface is hydrophobic, the interaction between the filtered liquid and the smaller pore wall surface has a very significant effect on the More >

Displaying 1-10 on page 1 of 6. Per Page