Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    FINITE ELEMENT ANALYSYS OF RADIATIVE UNSTEADY MHD VISCOUS DISSIPATIVE MIXED CONVECTION FLUID FLOW PAST AN IMPULSIVELY STARTED OSCILLATING PLATE IN THE PRESENCE OF HEAT SOURCE

    D. Santhi Kumaria,* , Venkata Subrahmanyam Sajjaa , P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-11, 2023, DOI:10.5098/hmt.20.5

    Abstract The aim of present study is an influence of viscous dissipation and heat source on an unsteady MHD mixed convective, fluid flow past an impulsively started oscillating plate embedded in a porous medium in presence of magnetic field, heat and mass transfer. The modeling equations are converted to dimensionless equations then solved through Galerkin finite element method and discussed in the flow distributions with the help of MATLAB. Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically More >

  • Open Access

    ARTICLE

    MAGNETOCONVECTION AND IRREVERSIBILITY PHENOMENA WITHIN A LID DRIVEN CAVITY FILLED WITH LIQUID METAL UNDER MAGNETIC FIELD

    Fakher Oueslatia,b,†, Brahim Ben-Beyab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.38

    Abstract The current study deals with a numerical investigation of magnetoconvection and entropy generation within a lid driven square cavity subject to uniform magnetic field and filled with liquid metal. Effects of multiple parameters namely; the Prandtl, Hartmann and Richardson numbers were predicted and analyzed using a numerical methodology based on the finite volume method and a full multigrid technique. The numerical outcome of the present study shows that, the enhancement of Hartmann number declines the heat transfer rate for all liquid metals considered. Moreover, it is observed that augmenting the Richardson number leads to acceleration More >

  • Open Access

    ARTICLE

    MHD CASSON VISCOUS DISSIPATIVE FLUID FLOW PAST A VERTICALLY INCLINED PLATE IN PRESENCE OF HEAT AND MASS TRANSFER: A FINITE ELEMENT TECHNIQUE

    R. Srinivasa Rajua,*, G. Jithender Reddyb , G. Anithaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-12, 2017, DOI:10.5098/hmt.8.27

    Abstract In the present study, consider an influence of chemical reaction on an unsteady MHD free convective, viscous dissipative Casson fluid flow over a vertically inclined plate in presence of magnetic field, heat and mass transfer. The modeling equations are converted to dimensionless equations, then solved through finite element technique. Computations were performed to analyze the behavior of fluid velocity, temperature, concentration and induced magnetic field on the inclined vertical plate with the variation of emerging physical parameters. Compared the present results with earlier reported studies for correctness and applicability of finite element technique. This model More >

Displaying 1-10 on page 1 of 3. Per Page